Εύρεση τιμής

Συντονιστής: m.pαpαgrigorakis

Άβαταρ μέλους
nikos_el
Δημοσιεύσεις: 104
Εγγραφή: Παρ Ιαν 02, 2015 5:00 pm

Εύρεση τιμής

#1

Μη αναγνωσμένη δημοσίευση από nikos_el » Τετ Νοέμ 08, 2017 10:27 pm

Δίνεται η συνάρτηση \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} για την οποία ισχύει: \displaystyle f^2 \left (x \right) - 2f \left( x \right)+2=f\left(2x \right) , \displaystyle \  \forall x \in \mathbb{R}. Επιπλέον, ισχύει \displaystyle f \left( 1 \right)=3.
Να βρεθεί η τιμή \displaystyle f \left( 6 \right).


Αν το Α είναι η επιτυχία, τότε ο μαθηματικός τύπος είναι Α=Χ+Υ+Ζ, όπου Χ ίσον δουλειά, Υ ίσον παιχνίδι και Ζ ίσον να κρατάς το στόμα σου κλειστό.
Albert Einstein

Λέξεις Κλειδιά:
Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9639
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Εύρεση τιμής

#2

Μη αναγνωσμένη δημοσίευση από KARKAR » Πέμ Νοέμ 09, 2017 3:12 pm

Η συνάρτηση είναι προφανώς η : f(x)=1+2^x , συνεπώς : f(6)=65 :lol:


ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 1750
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Εύρεση τιμής

#3

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Πέμ Νοέμ 09, 2017 8:00 pm

KARKAR έγραψε:
Πέμ Νοέμ 09, 2017 3:12 pm
Η συνάρτηση είναι προφανώς η : f(x)=1+2^x , συνεπώς : f(6)=65 :lol:
Γιατί είναι αυτή η μοναδική συνάρτηση;
Εγώ τουλάχιστον δεν το βλέπω.


Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9639
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Εύρεση τιμής

#4

Μη αναγνωσμένη δημοσίευση από KARKAR » Πέμ Νοέμ 09, 2017 8:47 pm

Σταύρο το γέλιο δηλώνει ανολοκλήρωτη - στην καλύτερη περίπτωση - λύση !

Ας γράψω όμως κάποιες σκέψεις : Η δοθείσα γράφεται : (f(x)-1)^2+1=f(2x)

ή (f(\dfrac{x}{2})-1)^2+1=f(x) , \forall x\in \mathbb{R} , συνεπώς f(x)\geq 1 , \forall x\in \mathbb{R}

Για x=0 , εύκολα βρίσκουμε ότι : f(0)=1 ή f(0)=2 (=1+2^0)

Για x=1 , βρίσκουμε ότι : \displaystyle f(\dfrac{1}{2})=1+\sqrt{2}=1+2^{\dfrac{1}{2}} .

Επίσης είναι : f(1)=3=(1+2^1) . Τώρα απορρίπτοντας την περίπτωση : f(0)=1,

και αξιοποιώντας το θεώρημα : "τι κάνει νιάου-νιάου στα κεραμίδια" , δίνουμε τη λύση ...


ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 1750
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Εύρεση τιμής

#5

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Πέμ Νοέμ 09, 2017 9:01 pm

KARKAR έγραψε:
Πέμ Νοέμ 09, 2017 8:47 pm
Σταύρο το γέλιο δηλώνει ανολοκλήρωτη - στην καλύτερη περίπτωση - λύση !
Θανάση συγνώμη.Αυτά τα διάφορα κερατάκια κλπ δεν ξέρω να τα εξηγώ.
Τα αγνοώ.Για μένα είναι σαν να μην υπάρχουν.
Πρέπει να προσαρμοστώ.


Mihalis_Lambrou
Επιμελητής
Δημοσιεύσεις: 10122
Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am

Re: Εύρεση τιμής

#6

Μη αναγνωσμένη δημοσίευση από Mihalis_Lambrou » Πέμ Νοέμ 09, 2017 9:20 pm

KARKAR έγραψε:
Πέμ Νοέμ 09, 2017 3:12 pm
Η συνάρτηση είναι προφανώς η : f(x)=1+2^x , συνεπώς : f(6)=65 :lol:
Χμμμμ.

Η f(x) = 1+2^x αν x ρητός, και f(x)=1 αν x άρρητος ικανοποιεί τις υποθέσεις αλλά είναι διαφορετική.

Υπάρχουν και άλλες διαφορετικές πλην της παραπάνω.


Λάμπρος Κατσάπας
Δημοσιεύσεις: 123
Εγγραφή: Σάβ Ιουν 17, 2017 10:17 pm
Τοποθεσία: Αθήνα

Re: Εύρεση τιμής

#7

Μη αναγνωσμένη δημοσίευση από Λάμπρος Κατσάπας » Πέμ Νοέμ 09, 2017 9:52 pm

Υποπτεύομαι ότι η δοσμένη σχέση έχει προκύψει από επίλυση της συναρτησιακής f(x+y)=f(x)f(y)-f(x)-f(y)+2. Με αυτή σαν αρχική είναι εύκολο να προκύψει το f(6)=65 καθώς επίσης και ότι f(x)=2^{x}+1 αν υποθέσουμε ότι f συνεχής. Έτσι όπως έχει δοθεί τώρα δεν βλέπω πως μπορεί να προκύψει το ζητούμενο.
τελευταία επεξεργασία από Λάμπρος Κατσάπας σε Πέμ Νοέμ 09, 2017 11:20 pm, έχει επεξεργασθεί 1 φορά συνολικά.


Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9639
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Εύρεση τιμής

#8

Μη αναγνωσμένη δημοσίευση από KARKAR » Πέμ Νοέμ 09, 2017 9:53 pm

Η άσκηση είναι αναρτημένη από χθες και δεν υπήρξε απάντηση . Λοιπόν αποφάσισα

να γράψω κάποιες σκέψεις που ασφαλώς δεν αποτελούν λύση , έχουν όμως πιθανόν

κάποια προωθητική αξία προς τη λύση . Σταύρο ίσως στο γραπτό λόγο να μην φαίνεται

το χιούμορ , όμως "στην αναβροχιά καλό είναι και το χαλάζι " .

Ρισκάρω πάντως την "μαντεψιά" , ότι αυτή τη συνάρτηση είχε στο μυαλό του ο θεματοδότης .


Επίτιμος Κ
Δημοσιεύσεις: 14
Εγγραφή: Παρ Οκτ 27, 2017 1:34 pm

Re: Εύρεση τιμής

#9

Μη αναγνωσμένη δημοσίευση από Επίτιμος Κ » Παρ Νοέμ 10, 2017 8:57 am

Οι συναρτήσεις της μορφής f(x)=\left\{\begin{matrix} 1+2^{x}, x=2^{n}\\ 1+a^{x}, x\neq 2^{n} \end{matrix}\right. a\neq 2 ικανοποιούν τις προϋποθέσεις του θέματος αλλά για κάθε τιμή του a παίρνουμε διαφορετική τιμή για το f(6).
Άρα το θέμα δε στέκει αν δε δοθούν επιπλέον προϋποθέσεις.


Απάντηση

Επιστροφή σε “ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 2 επισκέπτες