Ἀφοῦ ἡ

εἶναι συνεχῶς διαφορίσιμη καὶ ἔχει ἀντιστρέψιμο διαφορικό, τότε εἶναι ἀνοικτὴ ἀπεικόνιση (Inverse Function Theorem). Ἄρα
![f[\mathbb R^n] f[\mathbb R^n]](/forum/ext/geomar/texintegr/latexrender/pictures/18f3943056b78369dd93a5dff5a7ca90.png)
ἀνοικτό. Ἔστω
![\mathbb R^n\setminus f[\mathbb R^n]\ne\varnothing \mathbb R^n\setminus f[\mathbb R^n]\ne\varnothing](/forum/ext/geomar/texintegr/latexrender/pictures/d9ce444758460e0cde1aad57384e0853.png)
καὶ
![y_0\in \partial f[\mathbb R^n]\ne\varnothing y_0\in \partial f[\mathbb R^n]\ne\varnothing](/forum/ext/geomar/texintegr/latexrender/pictures/9ca0a0abc8b881e0eaa8f1bccde8a728.png)
. Προφανῶς
![y_0\not \in f[\mathbb R^n] y_0\not \in f[\mathbb R^n]](/forum/ext/geomar/texintegr/latexrender/pictures/bf92cf52b98e1fab123f8a135989e558.png)
, ἀφοῦ

ἀνοικτή. Τότε

συμπαγὲς καὶ ἐξ ὑποθέσεως,
![f^{-1}[\overline{B}(y_0,1)]\ne\varnothing f^{-1}[\overline{B}(y_0,1)]\ne\varnothing](/forum/ext/geomar/texintegr/latexrender/pictures/dad744dc6568c1526f7f7adeab62b3c4.png)
ἐπίσης. Ἰδιαιτέρως, ἄν

, καὶ
![\{y_n\}\subset f[\mathbb R^n]\cap \overline{B}(y_0,1) \{y_n\}\subset f[\mathbb R^n]\cap \overline{B}(y_0,1)](/forum/ext/geomar/texintegr/latexrender/pictures/bed054c49522a12d715ec4877a63b10a.png)
, καὶ
![\{x_n\}\in f^{-1}[\overline{B}(y_0,1)] \{x_n\}\in f^{-1}[\overline{B}(y_0,1)]](/forum/ext/geomar/texintegr/latexrender/pictures/cf45444e84211ba157976268bdf7f795.png)
, ὥστε

, τότε ἡ

ἔχει συγκλἰνουσα ὑπακολουθία

μὲ ὅριο
![z_0\in f^{-1}[\overline{B}(y_0,1)] z_0\in f^{-1}[\overline{B}(y_0,1)]](/forum/ext/geomar/texintegr/latexrender/pictures/f6b4201f9d548858dbdadfd38695c010.png)
καὶ
![f(z_n)\to f(z)\in f[\mathbb R^n] f(z_n)\to f(z)\in f[\mathbb R^n]](/forum/ext/geomar/texintegr/latexrender/pictures/74f1ec75e8d53d720326c9c880820640.png)
. Ταυτοχρὀνως,

. Ἄτοπο.