Όριο με πρώτους αριθμούς

Συντονιστές: grigkost, Κοτρώνης Αναστάσιος

Άβαταρ μέλους
stranger
Δημοσιεύσεις: 254
Εγγραφή: Δευ Ιαν 14, 2019 6:12 am
Τοποθεσία: Αθήνα

Όριο με πρώτους αριθμούς

#1

Μη αναγνωσμένη δημοσίευση από stranger » Παρ Νοέμ 15, 2019 10:23 pm

'Εστω \pi(k) το πλήθος των πρώτων αριθμών που είναι μικρότεροι η ίσοι από το k.
Έστω η συνάρτηση a(x,n,k) = \sqrt{\frac{n \pi(k) (k- \pi(k))}{k^2}} x +\frac{n \pi(k)}{k}.
Δείξτε ότι  \sum_{j \leq a(x,n,k)} {n \choose j} (\frac{\pi(k)}{k})^j (1- \frac{\pi(k)}{k})^{n-j} \rightarrow   \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x}{e^{-\frac{y^2}{2}} dy καθώς  n \rightarrow +\infty.


Κωνσταντίνος Σμπώκος
Μαθηματικός, PhD

Λέξεις Κλειδιά:
Λάμπρος Κατσάπας
Δημοσιεύσεις: 726
Εγγραφή: Σάβ Ιουν 17, 2017 10:17 pm
Τοποθεσία: Αθήνα

Re: Όριο με πρώτους αριθμούς

#2

Μη αναγνωσμένη δημοσίευση από Λάμπρος Κατσάπας » Παρ Νοέμ 15, 2019 11:10 pm

stranger έγραψε:
Παρ Νοέμ 15, 2019 10:23 pm
'Εστω \pi(k) το πλήθος των πρώτων αριθμών που είναι μικρότεροι η ίσοι από το k.
Έστω η συνάρτηση a(x,n,k) = \sqrt{\frac{n \pi(k) (k- \pi(k))}{k^2}} x +\frac{n \pi(k)}{k}.
Δείξτε ότι  \sum_{j \leq a(x,n,k)} {n \choose j} (\frac{\pi(k)}{k})^j (1- \frac{\pi(k)}{k})^{n-j} \rightarrow   \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x}{e^{-\frac{y^2}{2}} dy καθώς  n \rightarrow +\infty.
Γεια σας.

Δεν είναι άμεσο από το CLT(De Moivre-Laplace); Οι πρώτοι δεν βλέπω τι ρόλο παίζουν.

Μπορούμε να πάρουμε αυθαίρετη πιθανότητα αντί της \dfrac{\pi (k)}{k}. Μήπως χάνω κάτι;


Άβαταρ μέλους
stranger
Δημοσιεύσεις: 254
Εγγραφή: Δευ Ιαν 14, 2019 6:12 am
Τοποθεσία: Αθήνα

Re: Όριο με πρώτους αριθμούς

#3

Μη αναγνωσμένη δημοσίευση από stranger » Σάβ Νοέμ 16, 2019 1:12 am

Ναι είναι άμεσο από το κεντρικό οριακό θεώρημα.
Απλά έβαλα τους πρώτους για να τρομάξω λίγο τους αναγνώστες.


Κωνσταντίνος Σμπώκος
Μαθηματικός, PhD
Λάμπρος Κατσάπας
Δημοσιεύσεις: 726
Εγγραφή: Σάβ Ιουν 17, 2017 10:17 pm
Τοποθεσία: Αθήνα

Re: Όριο με πρώτους αριθμούς

#4

Μη αναγνωσμένη δημοσίευση από Λάμπρος Κατσάπας » Σάβ Νοέμ 16, 2019 1:23 pm

stranger έγραψε:
Σάβ Νοέμ 16, 2019 1:12 am
Ναι είναι άμεσο από το κεντρικό οριακό θεώρημα.
Απλά έβαλα τους πρώτους για να τρομάξω λίγο τους αναγνώστες.
Γεια σας. Με όλο τον σεβασμό.

Προσωπικά αφιέρωσα δέκα λεπτά εχθές, ήταν και βράδυ, για να δω που κάνω λάθος.

Θεώρησα ότι δεν μπορεί να έχει ανέβει κάτι τόσο προφανές σε έναν τέτοιο φάκελο.

Το Θεώρημα (όχι άσκηση) προφανώς και δεν είναι καθόλου προφανές για κάποιον που δεν το γνωρίζει.

Θεωρώ ότι δεν ήταν σωστή η επιλογή να μπει κάτι τέτοιο σε αυτόν τον φάκελο, ειδικά όπως μπήκε.


Άβαταρ μέλους
stranger
Δημοσιεύσεις: 254
Εγγραφή: Δευ Ιαν 14, 2019 6:12 am
Τοποθεσία: Αθήνα

Re: Όριο με πρώτους αριθμούς

#5

Μη αναγνωσμένη δημοσίευση από stranger » Κυρ Νοέμ 17, 2019 1:32 am

Καλησπέρα
Βασικά το έβαλα σε φάκελο ΑΕΙ επειδή θεώρησα πως μόνο οι μαθητές σε επίπεδο ΑΕΙ γίνεται να ξέρουν το κεντρικό οριακό θεώρημα.
Σχεδόν όλοι οι μαθητές σε σχολικό επίπεδο δεν γνωρίζουν το κεντρικό οριακό θεώρημα.
Επίσης έβαλα τους πρώτους αριθμούς για να μη βάλω το θεώρημα αυτούσιο με σκοπό να βάλω τον αναγνώστη να σκεφτεί ότι πράγματι χρειάζεται το κεντρικό οριακό θεώρημα.
Αυτή είναι η αποψή μου.


Κωνσταντίνος Σμπώκος
Μαθηματικός, PhD
ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 3234
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Όριο με πρώτους αριθμούς

#6

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Κυρ Νοέμ 17, 2019 8:35 pm

stranger έγραψε:
Κυρ Νοέμ 17, 2019 1:32 am
Καλησπέρα
Βασικά το έβαλα σε φάκελο ΑΕΙ επειδή θεώρησα πως μόνο οι μαθητές σε επίπεδο ΑΕΙ γίνεται να ξέρουν το κεντρικό οριακό θεώρημα.
Σχεδόν όλοι οι μαθητές σε σχολικό επίπεδο δεν γνωρίζουν το κεντρικό οριακό θεώρημα.
Επίσης έβαλα τους πρώτους αριθμούς για να μη βάλω το θεώρημα αυτούσιο με σκοπό να βάλω τον αναγνώστη να σκεφτεί ότι πράγματι χρειάζεται το κεντρικό οριακό θεώρημα.
Αυτή είναι η αποψή μου.
Προφανώς μπορείς να έχεις την οποιαδήποτε άποψη.
Ο κανονισμός του :logo: δεν νομίζω ότι απαγορεύει τέτοιου είδους ασκήσεις.

Η δική μου άποψη είναι ότι ασκήσεις σαν την παραπάνω παραποιούν τα Μαθηματικά.Ο λόγος είναι ότι οι
επιπλέον υποθέσεις τις καταντούν και γρίφους, ενώ η λύση τους είναι ''μια γραμμή''.
Ετσι τουλάχιστον εγώ δεν πρόκειται να ασχοληθώ με ασκήσεις τέτοιου τύπου.
Νομίζω δε ότι αρκετά μέλη του :logo: έχουν παραπλήσιες απόψεις με την δική μου.


Απάντηση

Επιστροφή σε “ΑΝΑΛΥΣΗ”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης