Ένα προς ένα και επί συνάρτηση

lefsk
Δημοσιεύσεις: 125
Εγγραφή: Τετ Μαρ 02, 2016 9:17 pm

Ένα προς ένα και επί συνάρτηση

#1

Μη αναγνωσμένη δημοσίευση από lefsk » Κυρ Αύγ 18, 2019 2:32 am

Δίνονται a,b \in \mathbb{Z}, a < b. Έστω A= \left \{ x\in \mathbb{Q}, a\leq x\leq b \right \} και B= \left \{ x\in \mathbb{Z}, a\leq x\leq b \right \}. Κάθε συνάρτηση 1-1 από το A στο A είναι επί, Σωστό ή Λάθος; Κάθε συνάρτηση 1-1 από το A στο B είναι επί, Σωστό ή Λάθος; Κάθε συνάρτηση 1-1 από το B στο B είναι επί, Σωστό ή Λάθος;

Νομίζω ότι Σωστές είναι η πρόταση 2 και 3. Και η πρόταση 1 Λάθος. Μπορεί κάποιος να βοηθήσει;
Για την Πρόταση 1 σκέφτηκα την f(x)=\frac{1}{2}x+1 με a=1, b=4 που δεν βγαίνει επί, αφού το σύνολο τιμών είναι υποσύνολο του πεδίου τιμών.



Λέξεις Κλειδιά:
stranger
Δημοσιεύσεις: 47
Εγγραφή: Δευ Ιαν 14, 2019 6:12 am
Τοποθεσία: United States of America

Re: Ένα προς ένα και επί συνάρτηση

#2

Μη αναγνωσμένη δημοσίευση από stranger » Κυρ Αύγ 18, 2019 5:41 am

Το 2 είναι τετριμένα σωστό γιατί δεν υπάρχει καμία 1-1 συνάρτηση από το Α στο Β αφού το Α είναι άπειρο και το Β πεπερασμένο.
Το 3 είναι σωστό γιατί το Β είναι πεπερασμένο.
Το 1 είναι λάθος αφού το Α είναι άπειρο σύνολο.Μια ιδέα για να το δείξουμε είναι να πούμε ότι θεωρούμε ένα άπειρο γνήσιο υποσύνολο του Α(έστω Γ).Τότε το Α είναι ισοπληθικό με το Γ(άπειρα αριθμήσιμα και τα δυο) και άρα αυτό σημαίνει ότι υπάρχει συνάρτηση από το Α στο Γ 1-1 και επί.Τότε έχουμε ότι η συνάρτηση αυτή είναι 1-1 αλλά όχι επί του Α.Τελειώσαμε.


Κωνσταντίνος Σμπώκος
Μαθηματικός
ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 2619
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Ένα προς ένα και επί συνάρτηση

#3

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Κυρ Αύγ 18, 2019 11:51 am

lefsk έγραψε:
Κυρ Αύγ 18, 2019 2:32 am
Δίνονται a,b \in \mathbb{Z}, a < b. Έστω A= \left \{ x\in \mathbb{Q}, a\leq x\leq b \right \} και B= \left \{ x\in \mathbb{Z}, a\leq x\leq b \right \}. Κάθε συνάρτηση 1-1 από το A στο A είναι επί, Σωστό ή Λάθος; Κάθε συνάρτηση 1-1 από το A στο B είναι επί, Σωστό ή Λάθος; Κάθε συνάρτηση 1-1 από το B στο B είναι επί, Σωστό ή Λάθος;

Νομίζω ότι Σωστές είναι η πρόταση 2 και 3. Και η πρόταση 1 Λάθος. Μπορεί κάποιος να βοηθήσει;
Για την Πρόταση 1 σκέφτηκα την f(x)=\frac{1}{2}x+1 με a=1, b=4 που δεν βγαίνει επί, αφού το σύνολο τιμών είναι υποσύνολο του πεδίου τιμών.
Για την γενική περίπτωση μπορείς να πάρεις την

f(x)=\frac{1}{2}x+\frac{1}{2}a


ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 2619
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Ένα προς ένα και επί συνάρτηση

#4

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Κυρ Αύγ 18, 2019 11:54 am

stranger έγραψε:
Κυρ Αύγ 18, 2019 5:41 am
Το 2 είναι τετριμένα σωστό γιατί δεν υπάρχει καμία 1-1 συνάρτηση από το Α στο Β αφού το Α είναι άπειρο και το Β πεπερασμένο.
Το 3 είναι σωστό γιατί το Β είναι πεπερασμένο.
Το 1 είναι λάθος αφού το Α είναι άπειρο σύνολο.Μια ιδέα για να το δείξουμε είναι να πούμε ότι θεωρούμε ένα άπειρο γνήσιο υποσύνολο του Α(έστω Γ).Τότε το Α είναι ισοπληθικό με το Γ(άπειρα αριθμήσιμα και τα δυο) και άρα αυτό σημαίνει ότι υπάρχει συνάρτηση από το Α στο Γ 1-1 και επί.Τότε έχουμε ότι η συνάρτηση αυτή είναι 1-1 αλλά όχι επί του Α.Τελειώσαμε.

3. Τα Μαθηματικά πρέπει να είναι αποκλειστικά γραμμένα σε LaTeX. Πολλές πληροφορίες και οδηγίες υπάρχουν στον φάκελο Οδηγίες για γραφή με TeX και βασικές οδηγίες στο Εισαγωγικές Οδηγίες για Εισαγωγή Μαθηματικού Κειμένου. Για τα νέα μέλη που δεν είναι εξοικειωμένα με το LaTeX η εκμάθηση (μπορούν να εξοικειωθούν γράφοντας μόνο στον φάκελο Δοκιμές Γραφής με Tex ) προηγείται της αποστολής μηνυμάτων. Στην προσπάθεια τους αυτή θα έχουν την βοήθεια των πιο έμπειρων μελών μας. Επισημαίνουμε ότι στο LaTeX πρέπει να γράφονται όχι μόνο οι τύποι αλλά ο οποιοσδήποτε μαθηματικός συμβολισμός (γράμματα για σημεία, σχήματα, γωνίες, συναρτήσεις, σύνολα κ.τ.λ.). Μεικτός συμβολισμός, περιγραφή των σχέσεων, χρήση κώδικα ascii ή ansii, χρήση συνημμένου εικόνας, .doc, .pdf (εξαιρούνται τα σχήματα) δεν είναι αποδεκτά.


MathSc
Δημοσιεύσεις: 33
Εγγραφή: Παρ Αύγ 31, 2018 5:46 pm

Re: Ένα προς ένα και επί συνάρτηση

#5

Μη αναγνωσμένη δημοσίευση από MathSc » Τρί Σεπ 03, 2019 7:27 pm

Καλησπέρα! Συγγνώμη για την ενόχληση αλλά πώς μπορώ να εξηγήσω γιατί το 2 είναι τετριμενα σωστό; δηλαδή αν κάποιος με ρωτήσει, πώς θα του απαντήσω; Το ότι δεν ισχύει το πρώτο μέρος της πρότασης αυτής, πως την κάνει σωστή; Ευχαριστώ


stranger
Δημοσιεύσεις: 47
Εγγραφή: Δευ Ιαν 14, 2019 6:12 am
Τοποθεσία: United States of America

Re: Ένα προς ένα και επί συνάρτηση

#6

Μη αναγνωσμένη δημοσίευση από stranger » Τετ Σεπ 04, 2019 7:19 am

Ο λόγος είναι επειδή δεν υπάρχει καμία 1-1 συνάρτηση από το A στο B.Αυτό συμβαίνει γιατί όταν υπάρχει μια 1-1 συνάρτηση από το X στο Y τότε έχουμε ότι το σύνολο X έχει πληθάριθμο μικρότερο η ίσο του Y.Όμως στο παράδειγμα σου το σύνολο A είναι άπειρο και το B πεπερασμένο.
Στα μαθηματικά όταν έχουμε προτάσεις της μορφής για κάθε x στο σύνολο M συνεπάγεται P(x) τότε αν δεν υπάρχει κανένα x στο σύνολο M τότε η πρόταση είναι αυτομάτως σωστή όποια και να είναι η ιδιότητα P(x).
Για παράδειγμα ξέρουμε ότι το κενό σύνολο είναι υποσύνολο κάθε συνόλου.Ισοδύναμα έχουμε την πρόταση : Για κάθε x στο \emptyset ισχύει x \in M,όπου δεν υπάρχει κανένα x στο \emptyset.
Αν δεν έχεις πειστεί ακόμα και θες κάποιου είδους απόδειξη τότε θεώρησε μια τυχαία ιδιότητα P και θεώρησε την πρόταση: Για κάθε x στο \emptyset ισχύει P(x).Η άρνηση αυτής της πρότασης είναι : υπάρχει x στο \emptyset έτσι ώστε να μην ισχύει η P(x) το οποίο είναι άτοπο γιατί δεν υπάρχει κανένα x στο \emptyset.
Τα εξήγησα πολύ αναλυτικά.Δεν πιστέυω να έχεις πρόβλημα στην κατανόηση.


Κωνσταντίνος Σμπώκος
Μαθηματικός
lefsk
Δημοσιεύσεις: 125
Εγγραφή: Τετ Μαρ 02, 2016 9:17 pm

Re: Ένα προς ένα και επί συνάρτηση

#7

Μη αναγνωσμένη δημοσίευση από lefsk » Τετ Σεπ 04, 2019 9:51 pm

Ευχαριστώ πάρα πολύ! Με βοηθήσατε πολύ!


Απάντηση

Επιστροφή σε “Μαθηματική Λογική & Θεμέλια Μαθηματικών”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης