Σελίδα 1 από 1

Κυκλικά όρια

Δημοσιεύτηκε: Πέμ Νοέμ 21, 2019 12:06 am
από Al.Koutsouridis
Έστω C κύκλος με κέντρο το σημείο \displaystyle P\left (t, \sin t \right ) που κινείται στην καμπύλη y=\sin x στο καρτεσιανό επίπεδο (0< t < \pi) και εφάπτεται του άξονα των x. Έστω Q το σημείο στο οποίο ο κύκλος C τέμνει τον άξονα x και R το ευθύγραμμο τμήμα OP. Αν \displaystyle \lim_{t \to 0^+} \dfrac{OQ}{OR} = a+b\sqrt{2}, να βρείτε την τιμή του αθροίσματος a+b. (Οπου O η αρχή των αξόνων και a,b ακέραιοι.)


korea_2020_24.png
korea_2020_24.png (42.57 KiB) Προβλήθηκε 621 φορές


Θέμα 24 των φετινών (2020) εισαγωγικών εξετάσεων της Κορέας, για την ομάδα τύπου Β (κατεύθυνσης).

Re: Κυκλικά όρια

Δημοσιεύτηκε: Πέμ Νοέμ 21, 2019 12:25 am
από Mihalis_Lambrou
Al.Koutsouridis έγραψε:
Πέμ Νοέμ 21, 2019 12:06 am
Έστω C κύκλος με κέντρο το σημείο \displaystyle P\left (t, \sin t \right ) που κινείται στην καμπύλη y=\sin x στο καρτεσιανό επίπεδο (0< t < \pi) και εφάπτεται του άξονα των x. Έστω Q το σημείο στο οποίο ο κύκλος C τέμνει τον άξονα x και R το ευθύγραμμο τμήμα OP. Αν \displaystyle \lim_{t \to 0^+} \dfrac{OQ}{OR} = a+b\sqrt{2}, να βρείτε την τιμή του αθροίσματος a+b. (Οπου O η αρχή των αξόνων και a,b ακέραιοι.)
Ευκολάκι για Κορέα:

\displaystyle{\lim_{t \to 0^+} \dfrac{OQ}{OR} = \lim_{t \to 0^+} \dfrac{OQ}{OP-PR} = \lim_{t \to 0^+} \dfrac{OQ}{OP-PQ} = \lim_{t \to 0^+} \dfrac{t}{\sqrt {t^2+\sin ^2 t}-\sin t}= }

\displaystyle{= \lim_{t \to 0^+} \dfrac{1}{\sqrt {1 +\dfrac {\sin ^2 t}{t^2}}- \dfrac {\sin  t}{t}}=  \dfrac{1}{\sqrt {1 +1}- 1}= \sqrt 2 + 1}, και λοιπά.

Re: Κυκλικά όρια

Δημοσιεύτηκε: Πέμ Νοέμ 21, 2019 10:32 am
από Al.Koutsouridis
Mihalis_Lambrou έγραψε:
Πέμ Νοέμ 21, 2019 12:25 am

Ευκολάκι για Κορέα:

\displaystyle{\lim_{t \to 0^+} \dfrac{OQ}{OR} = \lim_{t \to 0^+} \dfrac{OQ}{OP-PR} = \lim_{t \to 0^+} \dfrac{OQ}{OP-PQ} = \lim_{t \to 0^+} \dfrac{t}{\sqrt {t^2+\sin ^2 t}-\sin t}= }

\displaystyle{= \lim_{t \to 0^+} \dfrac{1}{\sqrt {1 +\dfrac {\sin ^2 t}{t^2}}- \dfrac {\sin  t}{t}}=  \dfrac{1}{\sqrt {1 +1}- 1}= \sqrt 2 + 1}, και λοιπά.
Να δούμε και τα σχετικά εύκολα... ;) . Αν και στα χρονικά πλαίσια που πρέπει να λυθεί δυσκολεύει.

Re: Κυκλικά όρια

Δημοσιεύτηκε: Πέμ Νοέμ 21, 2019 12:50 pm
από Mihalis_Lambrou
Al.Koutsouridis έγραψε:
Πέμ Νοέμ 21, 2019 10:32 am
Να δούμε και τα σχετικά εύκολα... ;) . Αν και στα χρονικά πλαίσια που πρέπει να λυθεί δυσκολεύει.
Ως ερώτηση είναι πάρα πολύ ωραία.

Δεν αμφιβάλλω ότι αν έμπαινε στις δικές μας Πανελλαδικές θα ήταν ... σφαγή. Την είπα "ευκολάκι" για τα εκεί δεδομένα. Είμαι βέβαιος
ότι ο μέσος υποψήφιος εκεί θα την διαχειριζόταν με ευχέρεια. Σε ένα καλό διαγώνισμα πρέπει να υπάρχουν και τέτοιες ερωτήσεις, δηλαδή προσιτές αλλά πρωτότυπες.