Συλλογή ασκήσεων με ορθογώνια

Συντονιστής: spyros

Άβαταρ μέλους
sakis1963
Δημοσιεύσεις: 692
Εγγραφή: Τετ Νοέμ 19, 2014 10:22 pm
Τοποθεσία: Κιάτο

Re: Συλλογή ασκήσεων με ορθογώνια

#641

Μη αναγνωσμένη δημοσίευση από sakis1963 » Πέμ Μαρ 24, 2016 3:18 pm

Ασκηση 226
GEOMETRIA Ορθογώνια Ασκ.226.png
GEOMETRIA Ορθογώνια Ασκ.226.png (24.31 KiB) Προβλήθηκε 2196 φορές
Εστω ορθογώνιο PQST και κύκλος (K, r) που διέρχεται από τα P, Q (K εξωτερικό του ορθογωνίου και r>\dfrac{PQ}{2})
Από τα T, S φέρουμε τα εφαπτόμενα τμήματα TC, SD που τέμνονται στο L.

Δείξτε ότι KP, KQ είναι εφαπτομένες του κυκλου (L, LT)


''Οσοι σου λένε δεν μπορείς, είναι πιθανότατα αυτοί, που φοβούνται μήπως τα καταφέρεις''
Νίκος Καζαντζάκης
Άβαταρ μέλους
rek2
Επιμελητής
Δημοσιεύσεις: 1434
Εγγραφή: Κυρ Δεκ 21, 2008 12:13 am

Re: Συλλογή ασκήσεων με ορθογώνια

#642

Μη αναγνωσμένη δημοσίευση από rek2 » Παρ Μαρ 25, 2016 1:21 am

sakis1963 έγραψε:Ασκηση 226
GEOMETRIA Ορθογώνια Ασκ.226.png
Εστω ορθογώνιο PQST και κύκλος (K, r) που διέρχεται από τα P, Q (K εξωτερικό του ορθογωνίου και r>\dfrac{PQ}{2})
Από τα T, S φέρουμε τα εφαπτόμενα τμήματα TC, SD που τέμνονται στο L.

Δείξτε ότι KP, KQ είναι εφαπτομένες του κυκλου (L, LT)
Αρκεί να δείξω ότι sin(P\hat{K}L)=\dfrac{R}{KL}. Πράγματι, είναι \dfrac{TS/2}{R}=sin(T\hat{L}K)=\dfrac{r}{KL}, οπότε

sin(P\hat{K}L)=\dfrac{PQ/2}{r}=\dfrac{TS/2}{r}=\dfrac{TS/2}{R}\dfrac{R}{r}=\dfrac{r}{KL}\dfrac{R}{r}=\dfrac{R}{KL}


Νῆφε καί μέμνασο ἀπιστεῖν˙ ἄρθρα ταῦτα γάρ φρενῶν
Νοῦς ὁρᾷ καί Νοῦς ἀκούει˙ τἆλλα κωφά καί τυφλά.
...
Ρεκούμης Κωνσταντίνος
Άβαταρ μέλους
sakis1963
Δημοσιεύσεις: 692
Εγγραφή: Τετ Νοέμ 19, 2014 10:22 pm
Τοποθεσία: Κιάτο

Re: Συλλογή ασκήσεων με ορθογώνια

#643

Μη αναγνωσμένη δημοσίευση από sakis1963 » Κυρ Μαρ 27, 2016 2:38 pm

Ασκηση 227
GEOMETRIA Ορθογώνια Ασκ.227.png
GEOMETRIA Ορθογώνια Ασκ.227.png (22.51 KiB) Προβλήθηκε 2109 φορές
Στις προεκτάσεις των διαγωνίων AC, BD, ορθογωνίου ABCD (AB=a, BC=b), παίρνουμε ίσα τμήματα CE=DF=x

α. Δείξτε ότι το ABEF είναι ισοσκελές τραπέζιο

β. Υπολογίστε το x (συναρτήσει των a, b) ώστε (ABEF)=2(ABCD)

γ. Υπολογίστε το λόγο \dfrac{a}{b} ώστε επιπλέον ο περίκυκλος του ABEF νάχει κέντρο το μέσον O της DC


''Οσοι σου λένε δεν μπορείς, είναι πιθανότατα αυτοί, που φοβούνται μήπως τα καταφέρεις''
Νίκος Καζαντζάκης
Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 6536
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Συλλογή ασκήσεων με ορθογώνια

#644

Μη αναγνωσμένη δημοσίευση από george visvikis » Δευ Μαρ 28, 2016 11:36 am

sakis1963 έγραψε:Ασκηση 227
Το συνημμένο GEOMETRIA Ορθογώνια Ασκ.227.png δεν είναι πλέον διαθέσιμο
Στις προεκτάσεις των διαγωνίων AC, BD, ορθογωνίου ABCD (AB=a, BC=b), παίρνουμε ίσα τμήματα CE=DF=x

α. Δείξτε ότι το ABEF είναι ισοσκελές τραπέζιο

β. Υπολογίστε το x (συναρτήσει των a, b) ώστε (ABEF)=2(ABCD)

γ. Υπολογίστε το λόγο \dfrac{a}{b} ώστε επιπλέον ο περίκυκλος του ABEF νάχει κέντρο το μέσον O της DC
Καλημέρα Σάκη.
227.png
227.png (17.74 KiB) Προβλήθηκε 2063 φορές
α) Το ABEF είναι τραπέζιο (προκύπτει από αντίστροφο Θαλή) και επειδή AE=BF είναι ισοσκελές.

β) Έστω \displaystyle{KD = d = \frac{{\sqrt {{a^2} + {b^2}} }}{2}}, (KAF)=(KBE)=(S_1), KFE=(S_2).

\displaystyle{\frac{{(KAD)}}{{(KAF)}} = \frac{{(KBC)}}{{(KBE)}} = \frac{{ab}}{{4({S_1})}} = \frac{d}{{d + x}} \Leftrightarrow } \boxed{({S_1}) = \frac{{ab(d + x)}}{{4d}}}

\displaystyle{\frac{{(KDC)}}{{({S_2})}} = \frac{{ab}}{{4({S_2})}} = \frac{{{d^2}}}{{{{(d + x)}^2}}} \Leftrightarrow } \boxed{({S_2}) = \frac{{ab{{(d + x)}^2}}}{{4{d^2}}}}

\displaystyle{(ABEF) = 2(ABCD) \Leftrightarrow 2({S_1}) + ({S_2}) + \frac{{ab}}{4} = 2ab \Leftrightarrow \frac{{d + x}}{{2d}} + \frac{{{{(d + x)}^2}}}{{4{d^2}}} = \frac{7}{4} \Leftrightarrow {x^2} + 2dx - 4{d^2} = 0}

απ' όπου παίρνουμε τη δεκτή ρίζα \displaystyle{x = 2d\left( {\sqrt 2  - 1} \right) \Leftrightarrow } \boxed{x = \left( {\sqrt 2  - 1} \right)\sqrt {{a^2} + {b^2}} }

γ) \displaystyle{FD \cdot DB = {R^2} - O{D^2} \Leftrightarrow 2xd = {b^2} \Leftrightarrow ({a^2} + {b^2})(\sqrt 2  - 1) = {b^2} \Leftrightarrow \frac{{{a^2}}}{{{b^2}}} = \sqrt 2  \Leftrightarrow } \boxed{\frac{a}{b} = \sqrt[4]{2}}


Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9576
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Συλλογή ασκήσεων με ορθογώνια

#645

Μη αναγνωσμένη δημοσίευση από KARKAR » Δευ Μαρ 28, 2016 12:54 pm

Άσκηση 228
Άσκηση  227.png
Άσκηση 227.png (10.61 KiB) Προβλήθηκε 2054 φορές
Ευθεία η οποία διέρχεται από την κορυφή D , ορθογωνίου ABCD , τέμνει τις

προεκτάσεις των BA,BC στα σημεία P,Q αντίστοιχα . Από το P και τυχόν

σημείο S της AD , διέρχεται άλλη ευθεία , προς την οποία φέρουμε κάθετη

από το B , η οποία τέμνει την DC στο T . Δείξτε ότι και : QT \perp BS .


STOPJOHN
Δημοσιεύσεις: 1640
Εγγραφή: Τετ Οκτ 05, 2011 7:08 pm
Τοποθεσία: Δροσιά, Αττικής

Re: Συλλογή ασκήσεων με ορθογώνια

#646

Μη αναγνωσμένη δημοσίευση από STOPJOHN » Δευ Μαρ 28, 2016 2:47 pm

KARKAR έγραψε:Άσκηση 228
Το συνημμένο Άσκηση 227.png δεν είναι πλέον διαθέσιμο
Ευθεία η οποία διέρχεται από την κορυφή D , ορθογωνίου ABCD , τέμνει τις

προεκτάσεις των BA,BC στα σημεία P,Q αντίστοιχα . Από το P και τυχόν

σημείο S της AD , διέρχεται άλλη ευθεία , προς την οποία φέρουμε κάθετη

από το B , η οποία τέμνει την DC στο T . Δείξτε ότι και : QT \perp BS .
Καλημέρα

Από το ορθογώνιο τρίγωνο PEB,  \hat{PEB}=\hat{TBP}=\hat{\phi },,

Aκόμη είναι SA//BC\Leftrightarrow \hat{ASB}=\hat{\phi }=\hat{SBE}

\hat{TBC}=\hat{\nu }=90-\hat{\phi },\hat{QTC}=\hat{\phi },\hat{TQC}=\hat{\nu }=90-\hat{\phi }, TQ=TB, 
 
 
\hat{NQB}+\hat{QBN}=90-\hat{\phi }+\hat{\phi }=90^{0}\Leftrightarrow QN\perp SB



Γιάννης
Συνημμένα
Ασκηση  228.png
Ασκηση 228.png (18.4 KiB) Προβλήθηκε 2032 φορές


α. Η δυσκολία με κάνει δυνατότερο.
β. Όταν πέφτεις να έχεις τη δύναμη να σηκώνεσαι.
Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9576
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Συλλογή ασκήσεων με ορθογώνια

#647

Μη αναγνωσμένη δημοσίευση από KARKAR » Τετ Μάιος 04, 2016 6:47 am

Άσκηση 229
Άσκηση  229.png
Άσκηση 229.png (15.93 KiB) Προβλήθηκε 1975 φορές
Ιδέα Καλογεράκη : Σημείο S κινείται στο μικρό τόξο \displaystyle\overset{\frown}{AB} του περικύκλου

ορθογωνίου ABCD . Η SC τέμνει την AB στο P . Γράφω τον κύκλο

(K) , ο οποίος διέρχεται από τα S,P,B . Έστω O το κέντρο του ABCD .

α) Δείξτε ότι KS\perp SO ... β) Βρείτε το γεωμετρικό τόπο του κέντρου K
τελευταία επεξεργασία από KARKAR σε Παρ Φεβ 10, 2017 8:04 pm, έχει επεξεργασθεί 1 φορά συνολικά.


Άβαταρ μέλους
ΣΤΑΘΗΣ ΚΟΥΤΡΑΣ
Επιμελητής
Δημοσιεύσεις: 3761
Εγγραφή: Κυρ Μαρ 13, 2011 9:11 pm
Τοποθεσία: Λ. Αιδηψού Ευβοίας

Re: Συλλογή ασκήσεων με ορθογώνια

#648

Μη αναγνωσμένη δημοσίευση από ΣΤΑΘΗΣ ΚΟΥΤΡΑΣ » Τετ Μάιος 04, 2016 9:46 am

KARKAR έγραψε:Ιδέα Καλογεράκη : Σημείο S κινείται στο μικρό τόξο \displaystyle\overset{\frown}{AB} του περικύκλου ορθογωνίου ABCD . Η SC τέμνει την AB στο P . Γράφω τον κύκλο (K) , ο οποίος διέρχεται από τα S,P,B . Έστω O το κέντρο του ABCD .α) Δείξτε ότι KS\perp SO ... β) Βρείτε το γεωμετρικό τόπο του κέντρου K
α) \angle OSC\mathop  = \limits^{OA = OC} \angle OCS\mathop  = \limits^{O,A,C\,\,\sigma \upsilon \nu \varepsilon \upsilon \theta \varepsilon \iota \alpha \kappa \alpha } \angle ACS \mathop  = \limits^{A,S,B,C\,\,o\mu o\kappa \upsilon \kappa \lambda \iota \kappa \alpha } \angle ABS \Rightarrow OS εφαπτόμενη του κύκλου \left( K \right) \Rightarrow KS \bot OS.

β) Με OS = OB = {R_O}\mathop  \Rightarrow \limits^{KS \bot OS} BK \bot OB \Rightarrow K σημείο του ευθυγράμμου τμήματος με άκρα το B και το σημείο τομής της καθέτου επί την σταθερή OB

με την μεσοκάθετη της AB και όλα τα ζητούμενα έχουν αποδειχθεί και βρεθεί.


Στάθης


Τι περιμένετε λοιπόν ναρθεί , ποιόν καρτεράτε να σας σώσει.
Εσείς οι ίδιοι με τα χέρια σας , με το μυαλό σας με την πράξη αν δεν αλλάξετε τη μοίρα σας ποτέ της δεν θα αλλάξει
Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 6536
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Συλλογή ασκήσεων με ορθογώνια

#649

Μη αναγνωσμένη δημοσίευση από george visvikis » Τετ Μάιος 04, 2016 11:16 am

KARKAR έγραψε:
Το συνημμένο Άσκηση 229.png δεν είναι πλέον διαθέσιμο
Ιδέα Καλογεράκη : Σημείο S κινείται στο μικρό τόξο \displaystyle\overset{\frown}{AB} του περικύκλου

ορθογωνίου ABCD . Η SC τέμνει την AB στο P . Γράφω τον κύκλο

(K) , ο οποίος διέρχεται από τα S,P,B . Έστω O το κέντρο του ABCD .

α) Δείξτε ότι KS\perp SO ... β) Βρείτε το γεωμετρικό τόπο του κέντρου K
Καλημέρα σε όλους!
Ορθογώνια.228.png
Ορθογώνια.228.png (20.25 KiB) Προβλήθηκε 1935 φορές
α) \displaystyle{AD = BC \Leftrightarrow D\widehat BA = B\widehat SC}, άρα η OB είναι εφαπτομένη του κύκλου (K) και επειδή τα τρίγωνα OBK, OSK είναι ίσα, θα είναι \displaystyle{O\widehat SK = {90^0}}.

β) Σύμφωνα με το προηγούμενο ερώτημα, το K κινείται πάνω σε ευθεία που διέρχεται από το σταθερό σημείο B και είναι κάθετη στη BD. Όταν το S πάρει τη θέση του A, τότε η AK θα είναι κάθετη στην AC. Αν λοιπόν οι εφαπτόμενες του κύκλου (O) στα A, B τέμνονται στο σημείο T, τότε το ευθύγραμμο τμήμα BT είναι ο ζητούμενος γεωμετρικός τόπος.


Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9576
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Συλλογή ασκήσεων με ορθογώνια

#650

Μη αναγνωσμένη δημοσίευση από KARKAR » Σάβ Μάιος 07, 2016 1:56 pm

Άσκηση 230
230.png
230.png (9.95 KiB) Προβλήθηκε 1899 φορές
α) Αν S είναι σημείο της διαγωνίου AC , ορθογωνίου ABCD , δείξτε ότι (SBC)=(SDC) .

β) Βρείτε το λόγο \dfrac{a}{b} , ώστε να είναι δυνατόν να ορισθεί S με \dfrac{BS}{DS}=\dfrac{1}{2} και κατασκευάστε το S .

γ) Αν a=9,b=4 υπολογίστε εμβαδόν και περίμετρο του τριγώνου SBC ( S του ερωτήματος β)) .


Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 6536
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Συλλογή ασκήσεων με ορθογώνια

#651

Μη αναγνωσμένη δημοσίευση από george visvikis » Σάβ Μάιος 07, 2016 8:14 pm

KARKAR έγραψε:Άσκηση 230
Το συνημμένο 230.png δεν είναι πλέον διαθέσιμο
α) Αν S είναι σημείο της διαγωνίου AC , ορθογωνίου ABCD , δείξτε ότι (SBC)=(SDC) .

β) Βρείτε το λόγο \dfrac{a}{b} , ώστε να είναι δυνατόν να ορισθεί S με \dfrac{BS}{DS}=\dfrac{1}{2} και κατασκευάστε το S .

γ) Αν a=9,b=4 υπολογίστε εμβαδόν και περίμετρο του τριγώνου SBC ( S του ερωτήματος β)) .
Ορθογώνια 230.png
Ορθογώνια 230.png (17.31 KiB) Προβλήθηκε 1870 φορές
α) Τα δύο τρίγωνα έχουν κοινή την πλευρά SC και επειδή οι κορυφές B, D ισαπέχουν της AC, είναι ισεμβαδικά. Αφήνω το β) ερώτημα και πάω στο

γ) Είναι \displaystyle{AC = BD = \sqrt {97}  \Rightarrow \sigma \upsilon \nu \varphi  = \frac{9}{{\sqrt {97} }},\sigma \upsilon \nu \omega  = \frac{4}{{\sqrt {97} }}} και με νόμο συνημιτόνων στα δύο τρίγωνα έχω:

\displaystyle{\left\{ \begin{gathered} 
  4{x^2} = 81 + C{S^2} - 18CS\sigma \upsilon \nu \varphi  \hfill \\ 
  {x^2} = 16 + C{S^2} - 8CS\sigma \upsilon \nu \omega  \hfill \\  
\end{gathered}  \right.}

Πολλαπλασιάζω την πάνω εξίσωση με 16, την κάτω με 81 και αφαιρώ κατά μέλη, οπότε \displaystyle{x = CS\sqrt {\frac{{65}}{{17}}} } και τελικά: \boxed{CS = \frac{{2\sqrt {1309}  - 17}}{{3\sqrt {97} }}}

Η περίμετρος είναι \boxed{L = 4 + \frac{{2\sqrt {1309}  - 17}}{{3\sqrt {97} }} + \frac{{2\sqrt {1309}  - 17}}{{3\sqrt {97} }} \cdot \sqrt {\frac{{65}}{{17}}} } και το εμβαδόν

\displaystyle{E = \frac{1}{2} \cdot 4 \cdot \frac{{2\sqrt {1309}  - 17}}{{3\sqrt {97} }}\eta \mu \omega  \Leftrightarrow } \boxed{E = \frac{6}{{97}}\left( {2\sqrt {1309}  - 17} \right)}


Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9576
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Συλλογή ασκήσεων με ορθογώνια

#652

Μη αναγνωσμένη δημοσίευση από KARKAR » Παρ Μάιος 13, 2016 7:30 pm

Άσκηση 231
232.png
232.png (7.5 KiB) Προβλήθηκε 1837 φορές
Σε ορθογώνιο ABCD συνδέουμε το κέντρο O με τα μέσα M,N των πλευρών

AB,AD αντίστοιχα . Οι διχοτόμοι των \widehat{ABD}, \widehat{ADB} , τέμνουν τις OM,ON

στα S,P αντίστοιχα . Βρείτε το λόγο \dfrac{AB}{AD} , ώστε : α) \dfrac{SM}{PN}=\dfrac{2}{3} , β) \dfrac{(DNP)}{(SMB)}=\dfrac{1}{2}


ealexiou
Δημοσιεύσεις: 1658
Εγγραφή: Παρ Νοέμ 15, 2013 10:06 pm
Τοποθεσία: ΒΟΛΟΣ

Re: Συλλογή ασκήσεων με ορθογώνια

#653

Μη αναγνωσμένη δημοσίευση από ealexiou » Παρ Μάιος 13, 2016 8:54 pm

KARKAR έγραψε:Άσκηση 231
Το συνημμένο 232.png δεν είναι πλέον διαθέσιμο
Σε ορθογώνιο ABCD συνδέουμε το κέντρο O με τα μέσα M,N των πλευρών

AB,AD αντίστοιχα . Οι διχοτόμοι των \widehat{ABD}, \widehat{ADB} , τέμνουν τις OM,ON

στα S,P αντίστοιχα . Βρείτε το λόγο \dfrac{AB}{AD} , ώστε : α) \dfrac{SM}{PN}=\dfrac{2}{3} , β) \dfrac{(DNP)}{(SMB)}=\dfrac{1}{2}
Συλλογή ασκήσεων με ορθογώνια Ασκ. 231.png
Συλλογή ασκήσεων με ορθογώνια Ασκ. 231.png (13.63 KiB) Προβλήθηκε 1825 φορές
Για το α)
Ας είναι \dfrac{AB}{AD}=k\Rightarrow a=kb οπότε DB=\sqrt{b^2+(kb)^2}=b\sqrt{k^2+1} και άρα DO=OB=\dfrac{b\sqrt{k^2+1}}{2}

Θεώρημα διχοτόμων, οπότε έχουμε:
\dfrac{x}{b/2}=\dfrac{kb/2}{kb/2+b\sqrt{k^2+1}/2}\Rightarrow \boxed{x=\dfrac{kb}{2(k+\sqrt{k^2+1})}} και \dfrac{y}{kb/2}=\dfrac{b/2}{b/2+b\sqrt{k^2+1}/2}\Rightarrow  \boxed{y=\dfrac{kb}{2(1+\sqrt{k^2+1})}}

Θέλουμε \dfrac{SM}{PN}=\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow \dfrac{\dfrac{kb}{2(k+\sqrt{k^2+1})}}{\dfrac{kb}{2(1+\sqrt{k^2+1})}}=\dfrac{2}{3}\Rightarrow ...\Rightarrow\boxed{\boxed{\dfrac{AB}{AD}=k=2+\dfrac{2\sqrt{3}}{3}}}
τελευταία επεξεργασία από ealexiou σε Παρ Μάιος 13, 2016 8:59 pm, έχει επεξεργασθεί 1 φορά συνολικά.


Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 6536
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Συλλογή ασκήσεων με ορθογώνια

#654

Μη αναγνωσμένη δημοσίευση από george visvikis » Παρ Μάιος 13, 2016 8:56 pm

KARKAR έγραψε:Άσκηση 231
Το συνημμένο 232.png δεν είναι πλέον διαθέσιμο
Σε ορθογώνιο ABCD συνδέουμε το κέντρο O με τα μέσα M,N των πλευρών

AB,AD αντίστοιχα . Οι διχοτόμοι των \widehat{ABD}, \widehat{ADB} , τέμνουν τις OM,ON

στα S,P αντίστοιχα . Βρείτε το λόγο \dfrac{AB}{AD} , ώστε : α) \dfrac{SM}{PN}=\dfrac{2}{3} , β) \dfrac{(DNP)}{(SMB)}=\dfrac{1}{2}
Χαιρετώ τους φίλους!
Ορθογώνια 231.png
Ορθογώνια 231.png (10.05 KiB) Προβλήθηκε 1824 φορές
Έστω AB=2a, AD=2b, οπότε OD=OB=\sqrt{a^2+b^2}. Από το θεώρημα εσωτερικής διχοτόμου είναι:

\displaystyle{\frac{{NP}}{{PO}} = \frac{b}{{OD}} \Leftrightarrow \frac{{NP}}{a} = \frac{b}{{b + \sqrt {{a^2} + {b^2}} }} \Leftrightarrow } \boxed{NP = \frac{{ab}}{{b + \sqrt {{a^2} + {b^2}} }}} και ομοίως \boxed{SM = \frac{{ab}}{{a + \sqrt {{a^2} + {b^2}} }}}

α) \displaystyle{\frac{{SM}}{{PN}} = \frac{2}{3} \Leftrightarrow \frac{{b + \sqrt {{a^2} + {b^2}} }}{{a + \sqrt {{a^2} + {b^2}} }} = \frac{2}{3} \Leftrightarrow 3{a^2} - 12ab + 8{b^2} = 0\mathop  \Leftrightarrow \limits^{a > b} } \boxed{\frac{a}{b} = \frac{2}{3}\left( {3 + \sqrt 3 } \right)}

β) \displaystyle{\frac{{(DNP)}}{{(SMB)}} = \frac{1}{2} \Leftrightarrow \frac{{b \cdot NP}}{{a \cdot SM}} = \frac{1}{2} \Leftrightarrow \frac{{ab + b\sqrt {{a^2} + {b^2}} }}{{ab + a\sqrt {{a^2} + {b^2}} }} = \frac{1}{2} \Leftrightarrow \frac{{ab}}{{a - 2b}} = \sqrt {{a^2} + {b^2}} ,} με a>2b

Με λογισμικό βρίσκω \boxed{\frac{a}{b} \simeq 2,947}


Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 6536
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Συλλογή ασκήσεων με ορθογώνια

#655

Μη αναγνωσμένη δημοσίευση από george visvikis » Δευ Μάιος 30, 2016 10:04 pm

Άσκηση 232
Ορθογώνια 232.png
Ορθογώνια 232.png (9.81 KiB) Προβλήθηκε 1748 φορές
Οι πλευρές και η διαγώνιος ορθογωνίου ABCD είναι διψήφιοι ακέραιοι αριθμοί. Αν εναλλάξουμε τα ψηφία

του μήκους της μεγάλης του διάστασης, προκύπτει το μήκος της διαγωνίου.

α) Να βρεθούν οι διαστάσεις και η διαγώνιος του ορθογωνίου.

β) Σημείο K κινείται στην πλευρά DC και η μεσοκάθετος της AK τέμνει τις πλευρές AB, AD στα σημεία M, N αντίστοιχα.

Να βρεθεί η ελάχιστη τιμή του (MAN)


ealexiou
Δημοσιεύσεις: 1658
Εγγραφή: Παρ Νοέμ 15, 2013 10:06 pm
Τοποθεσία: ΒΟΛΟΣ

Re: Συλλογή ασκήσεων με ορθογώνια

#656

Μη αναγνωσμένη δημοσίευση από ealexiou » Τρί Μάιος 31, 2016 12:04 am

Γεια σου Γιώργο!
Συλλογή ασκήσεων με ορθογώνια Ασκ. 232.png
Συλλογή ασκήσεων με ορθογώνια Ασκ. 232.png (28.21 KiB) Προβλήθηκε 1726 φορές
Για το α) (και ...υπαινιγμός για το β))
Αν \overline{xy} η διαγώνιος τότε η μια πλευρά του ορθογωνίου θα έχει την μορφή \overline{yx} και αν n (όπου n διψήφιος αριθμός) η άλλη πλευρά του ορθογωνίου τότε:

(10x+y)^2-(10y+x)^2=n^2\Rightarrow 99(x^2-y^2)=n^2 απο όπου με δοκιμές βρίσκω n=33

και άρα x^2-y^2=\dfrac{1089}{99}=11\Rightarrow (x+y)(x-y)=11\Rightarrow x=6, y=5,

δηλαδή \boxed{AD=33, DC=56, AC=DB=65}


ealexiou
Δημοσιεύσεις: 1658
Εγγραφή: Παρ Νοέμ 15, 2013 10:06 pm
Τοποθεσία: ΒΟΛΟΣ

Re: Συλλογή ασκήσεων με ορθογώνια

#657

Μη αναγνωσμένη δημοσίευση από ealexiou » Τρί Μάιος 31, 2016 3:43 pm

george visvikis έγραψε:Άσκηση 232
Το συνημμένο Ορθογώνια 232.png δεν είναι πλέον διαθέσιμο
Οι πλευρές και η διαγώνιος ορθογωνίου ABCD είναι διψήφιοι ακέραιοι αριθμοί. Αν εναλλάξουμε τα ψηφία

του μήκους της μεγάλης του διάστασης, προκύπτει το μήκος της διαγωνίου.

α) Να βρεθούν οι διαστάσεις και η διαγώνιος του ορθογωνίου.

β) Σημείο K κινείται στην πλευρά DC και η μεσοκάθετος της AK τέμνει τις πλευρές AB, AD στα σημεία M, N αντίστοιχα.

Να βρεθεί η ελάχιστη τιμή του (MAN)
Συλλογή ασκήσεων με ορθογώνια Ασκ. 232a.png
Συλλογή ασκήσεων με ορθογώνια Ασκ. 232a.png (42.25 KiB) Προβλήθηκε 1683 φορές
Συλλογή ασκήσεων με ορθογώνια Ασκ. 232b.png
Συλλογή ασκήσεων με ορθογώνια Ασκ. 232b.png (21.45 KiB) Προβλήθηκε 1683 φορές
Είναι προφανές (διαγραμματικά) ότι (MAN)\geq (M_0AN_0)\Rightarrow (MAN)_{min}=(M_0AN_0)

Είναι AP=DK_0=DAtan30°=33\cdot \dfrac{\sqrt{3}}{3}=11\sqrt{3},

άρα AK_0=22\sqrt{3} και επίσης είναι DQ=\dfrac{DA}{2}=\dfrac{33}{2}

Είναι \triangle M_0AN_0 \sim \triangle ADK_0 \Rightarrow N_0M_0=\dfrac{AP\cdot AK_0}{DQ}\Rightarrow N_0M_0=44

οπότε (MAN)_{min}=\dfrac{44\cdot11\sqrt{3} }{2}=242\sqrt{3}


Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 6536
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Συλλογή ασκήσεων με ορθογώνια

#658

Μη αναγνωσμένη δημοσίευση από george visvikis » Τετ Ιουν 08, 2016 6:03 pm

Άσκηση 233
Ορθογώνια 233.png
Ορθογώνια 233.png (13.42 KiB) Προβλήθηκε 1601 φορές
Δίνεται ορθογώνιο ABCD και ένα σημείο M του επιπέδου που να μην βρίσκεται πάνω στις διαγώνιές του. Αν είναι γνωστές οι γωνίες \displaystyle{D\widehat MB = \omega ,C\widehat MA = \varphi }, να υπολογίσετε το λόγο των εμβαδών \displaystyle{\frac{{(DMB)}}{{(CMA)}}}


dement
Διευθύνον Μέλος
Δημοσιεύσεις: 1338
Εγγραφή: Τρί Δεκ 23, 2008 10:11 am

Re: Συλλογή ασκήσεων με ορθογώνια

#659

Μη αναγνωσμένη δημοσίευση από dement » Τετ Ιουν 08, 2016 6:30 pm

Σε κάθε τρίγωνο \triangle{ABC} εμβαδού E ισχύει (από το νόμο των συνημιτόνων) ότι c^2 = a^2 + b^2 - 4 E \cot \hat{C}.

Στην περίπτωση των \triangle{DBM}, \triangle{CMA} έχουμε BD = CA και DM^2 + BM^2 = CM^2 + AM^2.

Άρα \displaystyle (DMB) \cot \omega = (CMA) \cot \phi \implies \frac{(DMB)}{(CMA)} = \frac{\cot \phi}{\cot \omega}


Δημήτρης Σκουτέρης

Τα μαθηματικά είναι η μοναδική επιστήμη που θα μπορούσε κανείς να εξακολουθήσει να ασκεί αν κάποτε ξυπνούσε και το σύμπαν δεν υπήρχε πλέον.
Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 9576
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Συλλογή ασκήσεων με ορθογώνια

#660

Μη αναγνωσμένη δημοσίευση από KARKAR » Τετ Ιούλ 27, 2016 9:14 am

Άσκηση 234
Άσκηση 234.png
Άσκηση 234.png (9.15 KiB) Προβλήθηκε 1486 φορές
Προεκτείνουμε τις πλευρές CB ,CD , ορθογωνίου ABCD κατά τμήματα BS=BA

και DP=DA αντίστοιχα . Τα σημεία P,A,S είναι προφανώς συνευθειακά .

Δείξτε ότι ο περίκυκλος του ορθογωνίου διέρχεται από το μέσο M του τμήματος PS .


Απάντηση

Επιστροφή σε “ΓΕΝΙΚΑ ΘΕΜΑΤΑ”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης