Πόσο φανερό ;

Συντονιστής: Καρδαμίτσης Σπύρος

Άβαταρ μέλους
exdx
Επιμελητής
Δημοσιεύσεις: 1423
Εγγραφή: Κυρ Δεκ 21, 2008 6:00 pm
Τοποθεσία: Ηράκλειο Κρήτης
Επικοινωνία:

Πόσο φανερό ;

#1

Μη αναγνωσμένη δημοσίευση από exdx » Κυρ Οκτ 06, 2019 4:43 pm

Το παρακάτω είναι από το σχολικό βιβλίο Γεωμετρίας Α΄ Λυκείου
(σχετικές θέσεις ευθείας - κύκλου)
circline.png
circline.png (42.49 KiB) Προβλήθηκε 385 φορές
Νομίζω θα ήταν καλύτερα να έλεγε : αποδεικνύεται ότι ....


Kαλαθάκης Γιώργης

Λέξεις Κλειδιά:
Άβαταρ μέλους
emouroukos
Γενικός Συντονιστής
Δημοσιεύσεις: 1393
Εγγραφή: Δευ Δεκ 22, 2008 1:27 pm
Τοποθεσία: Αγρίνιο

Re: Πόσο φανερό ;

#2

Μη αναγνωσμένη δημοσίευση από emouroukos » Κυρ Οκτ 06, 2019 5:09 pm

Εννοείται πως ο Γιώργης έχει δίκιο. Στην παρακάτω εικόνα βλέπουμε μια απόδειξη του "φανερού" ισχυρισμού από το βιβλίο του Γιώργου Τσίντσιφα "Επιπεδομετρία" (σελ. 398) - ένα πραγματικό κόσμημα της ελληνικής μαθηματικής βιβλιογραφίας. Χρησιμοποιείται το (διόλου φανερό) Αξίωμα της Συνέχειας...
Συνημμένα
Τσίντσιφας 398.jpg
Τσίντσιφας 398.jpg (434.53 KiB) Προβλήθηκε 370 φορές


Βαγγέλης Μουρούκος

Erro ergo sum.
Μάρκος Βασίλης
Δημοσιεύσεις: 69
Εγγραφή: Σάβ Αύγ 31, 2019 5:47 pm
Τοποθεσία: Καισαριανή
Επικοινωνία:

Re: Πόσο φανερό ;

#3

Μη αναγνωσμένη δημοσίευση από Μάρκος Βασίλης » Κυρ Οκτ 06, 2019 5:23 pm

Ίσως να ήταν καλύτερο, μιας και είναι πολύ λεπτό σημείο γιατί υπάρχει το σημείο τομής και γιατί είναι μοναδικό, όπως πολύ ωραία φαίνεται και στις σημειώσεις του κ. Τσίντσιφα.

Ωστόσο, σε ό,τι έχει να κάνει με το «αξίωμα της συνέχειας» και το πόσο είναι φανερό, νομίζω ότι για έναν μαθητή αυτό αντικαθίσταται από μία «διαίσθηση» περί της πληρότητας - προσωπική άποψη/εντύπωση. Δηλαδή, δε θυμάμαι πολλούς μαθητές να έχουν ως εικόνα μίας ευθείας κάτι που να μην αντιστοιχεί σε μία «πλήρη» ευθεία, ίσως και για αυτό στο βιβλίο να επιλέχθηκε η έκφραση «είναι φανερό ότι».

Όπως και να έχει, ίσως το «μπορεί να αποδειχθεί ότι» να είναι προτιμότερο.


\textcolor{blue}{\forall after-maths}
Άβαταρ μέλους
exdx
Επιμελητής
Δημοσιεύσεις: 1423
Εγγραφή: Κυρ Δεκ 21, 2008 6:00 pm
Τοποθεσία: Ηράκλειο Κρήτης
Επικοινωνία:

Re: Πόσο φανερό ;

#4

Μη αναγνωσμένη δημοσίευση από exdx » Κυρ Οκτ 06, 2019 6:24 pm

Γενικά , μπορούν να γίνουν διαφορετικές προσεγγίσεις , ανάλογα με τα αξιώματα που έχουν διατυπωθεί
και τα θεωρήματα που έχουν ήδη αποδειχθεί .

Μια άλλη αντιμετώπιση (αντιγραφή από το Έλασσον Γεωμετρικόν του Π. Πάμφιλου )
Συνημμένα
circline2.png
circline2.png (23.7 KiB) Προβλήθηκε 338 φορές


Kαλαθάκης Γιώργης
Μάρκος Βασίλης
Δημοσιεύσεις: 69
Εγγραφή: Σάβ Αύγ 31, 2019 5:47 pm
Τοποθεσία: Καισαριανή
Επικοινωνία:

Re: Πόσο φανερό ;

#5

Μη αναγνωσμένη δημοσίευση από Μάρκος Βασίλης » Κυρ Οκτ 06, 2019 6:27 pm

exdx έγραψε:
Κυρ Οκτ 06, 2019 6:24 pm
Γενικά , μπορούν να γίνουν διαφορετικές προσεγγίσεις , ανάλογα με τα αξιώματα που έχουν διατυπωθεί
και τα θεωρήματα που έχουν ήδη αποδειχθεί .

Μια άλλη αντιμετώπιση (αντιγραφή από το Έλασσον Γεωμετρικόν του Π. Πάμφιλου )
Νομίζω ότι αυτό μας δίνει τη «μοναδικότητα». Ωστόσο, για την ύπαρξη, δεν μπορούμε να παρακάμψουμε κάποιο αξίωμα συνέχειας/πληρότητας.


\textcolor{blue}{\forall after-maths}
Άβαταρ μέλους
Al.Koutsouridis
Δημοσιεύσεις: 967
Εγγραφή: Πέμ Ιαν 30, 2014 11:58 pm
Τοποθεσία: Αθήνα

Re: Πόσο φανερό ;

#6

Μη αναγνωσμένη δημοσίευση από Al.Koutsouridis » Κυρ Οκτ 06, 2019 9:16 pm

exdx έγραψε:
Κυρ Οκτ 06, 2019 4:43 pm
Νομίζω θα ήταν καλύτερα να έλεγε : αποδεικνύεται ότι ....
Από περιέργεια έριξα μια ματιά στο βιβλίο της γεωμετρίας του Kolmogorov για τις τάξεις 6-8 (επί Σοβιετικής Ένωσης), που δεν ήταν και το πιο φιλικό προς το μαθητή και είχε ως ένα βαθμό αρκετή αυστηρότητα. Εκεί αναφαίρει "Η απόδειξη αυτής της πρότασης είναι δύσκολη και παραλείπεται".


Άβαταρ μέλους
exdx
Επιμελητής
Δημοσιεύσεις: 1423
Εγγραφή: Κυρ Δεκ 21, 2008 6:00 pm
Τοποθεσία: Ηράκλειο Κρήτης
Επικοινωνία:

Re: Πόσο φανερό ;

#7

Μη αναγνωσμένη δημοσίευση από exdx » Κυρ Οκτ 06, 2019 11:05 pm

Δεν αντιλέγω . Το αξίωμα της συνέχειας είναι βαρύ για μαθητές Α΄Λυκείου. Αλλά να είμαστε ειλικρινείς:
Αποδεικνύεται αλλά είναι έξω από τα πλαίσια κλπ κλπ .
Διαφορετικά πως θα λέμε στους μαθητές ότι δεν βασιζόμαστε πλέον στην εποπτεία , ότι θεμελιώνουμε
αυστηρά και βήμα- βήμα μια επιστήμη ...

Άλλη μια ημι-ελλιπής αντιμετώπιση στο προηγούμενο σχολικό βιβλίο των Θωμαίδη ,Ξένου , ... , έκδοση του 1999
Συνημμένα
circline3.png
circline3.png (150.89 KiB) Προβλήθηκε 249 φορές


Kαλαθάκης Γιώργης
ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 2568
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Πόσο φανερό ;

#8

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Κυρ Οκτ 06, 2019 11:16 pm

exdx έγραψε:
Κυρ Οκτ 06, 2019 4:43 pm
Το παρακάτω είναι από το σχολικό βιβλίο Γεωμετρίας Α΄ Λυκείου
(σχετικές θέσεις ευθείας - κύκλου)

circline.png

Νομίζω θα ήταν καλύτερα να έλεγε : αποδεικνύεται ότι ....
Κατά αρχήν να σημειώσω ότι αν καθόμαστε και ασχολούμαστε με αυτές τις λεπτομέριες
τότε οι περισσότερες λύσεις των πράγματι αξιόλογων και ικανότατων Γεωμετρών του :logo:
θα είχαν κενά.
Το ίδιο θα συνέβαινε και σχεδόν σε όλα τα αξιόλογα βιβλία Γεωμετρίας.

Βέβαια δεν απαντώ για να διατυπώσω τα παραπάνω.

Επί της ουσίας δηλαδή επί των θεμελίων της Γεωμετρίας.
Διότι εκεί είναι το θέμα και όχι διδακτικής.

Υπάρχει λοιπόν Ελληνικό βιβλίο Γεωμετρίας το οποίο λέει
3.124
Αξίωμα.
Αν (c) και (c') είναι δύο κύκλοι κείμενοι επί του επιπέδου p ,εκ των οποίων ο (c') έχει τουλάχιστον
ένα σημείον εσωτερικόν του (c) και ένα σημείον εξωτερικόν του (c) ,τότε οι κύκλοι (c) και (c')
έχουν τουλάχιστον ένα κοινόν σημείον
3.125
Θεώρημα
Αν μία ευθεία (a) του επιπέδου ενός κύκλου (c) περιέχει ένα σημείον εσωτερικόν του
κύκλου (c),τότε η ευθεία (a) έχει δύο κοινά σημεία με τον κύκλον (c)
Απόδειξη
(είναι γραμμένη αλλά δεν την παραθέτω)
Το αξίωμα 3.124 είναι εξ άλλου ,ισοδύναμον προς το εξής:
Αν το τυχόν εκ τριών δοθέντων ευθ.τμημάτων είναι μικρότερον του αθροίσματος των
δύο άλλων ,τότε υπάρχει τρίγωνο του οποίου οι πλευρές είναι αντιστοίχως ίσαι πρός τα τρία αυτά δοθέντα
ευθ.τμήματα

(μέχρι εδώ τα του βιβλίου.Ασκηση Ποιο είναι το βιβλίο;(για όλους μέχρι 8-10-2019)

Τα παραπάνω είναι της Απολύτου Γεωμετρίας.

Αν θεωρήσουμε ότι ισχύει το αξίωμα των παραλλήλων τότε έχουμε το Πυθαγόρειο
και η απόδειξη είναι απλούστατη.

Την συνέχεια ας την δώσουν οι άξιοι Γεωμέτρες μας.


ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 2568
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Πόσο φανερό ;

#9

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Τρί Οκτ 08, 2019 11:15 pm

ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ έγραψε:
Κυρ Οκτ 06, 2019 11:16 pm

(μέχρι εδώ τα του βιβλίου.Ασκηση Ποιο είναι το βιβλίο;(για όλους μέχρι 8-10-2019)
Το βιβλίο είναι
Ι.Γ.ΙΩΑΝΝΙΔΗ
ΓΕΩΜΕΤΡΙΑ


Απάντηση

Επιστροφή σε “Διδακτική των Μαθηματικών”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 2 επισκέπτες