Μοιρασιά

Συντονιστής: ΣΤΑΘΗΣ ΚΟΥΤΡΑΣ

Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 12687
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Μοιρασιά

#1

Μη αναγνωσμένη δημοσίευση από KARKAR » Παρ Απρ 03, 2020 9:35 am

Μοιρασιά.png
Μοιρασιά.png (14.88 KiB) Προβλήθηκε 360 φορές
\bigstar Ο πατέρας άφησε στον γιο το μπλε μέρος του τραπεζίου οικοπέδου ,

ενώ στην κόρη το ροζ . Δείξτε ότι δεν έκανε δίκαιη μοιρασιά .



Λέξεις Κλειδιά:
Άβαταρ μέλους
Γιώργος Ρίζος
Επιμελητής
Δημοσιεύσεις: 4900
Εγγραφή: Δευ Δεκ 29, 2008 1:18 pm
Τοποθεσία: Κέρκυρα

Re: Μοιρασιά

#2

Μη αναγνωσμένη δημοσίευση από Γιώργος Ρίζος » Παρ Απρ 03, 2020 10:58 am

KARKAR έγραψε:
Παρ Απρ 03, 2020 9:35 am
Ο πατέρας άφησε στον γιο το μπλε μέρος του τραπεζίου οικοπέδου,ενώ στην κόρη το ροζ . Δείξτε ότι δεν έκανε δίκαιη μοιρασιά .
Καλημέρα Θανάση. Ελπίζω να ασχοληθούν οι μαθητές μ' αυτό το θέμα. Ενδείκνυται και για διερεύνηση.

Πάντως, βλέποντας τη μοιρασιά που έκανε ο πατέρας των παιδιών, συνάγεται το αβίαστο συμπέρασμα, ότι θα έχει σπαταλήσει μια περιουσία στους ψυχοθεραπευτές, δίχως όμως εμφανή αποτελέσματα βελτίωσης της ψυχικής του υγείας.


Mihalis_Lambrou
Επιμελητής
Δημοσιεύσεις: 13493
Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am

Re: Μοιρασιά

#3

Μη αναγνωσμένη δημοσίευση από Mihalis_Lambrou » Παρ Απρ 03, 2020 11:24 am

Γιώργο, μην το λες. Ποτέ δεν ξέρεις τι μπορεί να γίνει στο μέλλον με την περιουσία. Για παράδειγμα εδώ στην Κρήτη υπάρχουν χωριά στο βουνό αλλά κοντά στη θάλασσα, για παράδειγμα η Άνω Χερσόνησος. Οι κάτοικοι εν γένει είχαν αγροτεμάχια (ελιές, αμπέλι) κοντά στο χωριό αλλά και πιο άγονα κοντά στην θάλασσα. Φρόντιζαν να δίνουν κληρονομιά στα αγόρια εκείνα τα αγροτεμάχια που ήσαν κοντά στο χωριό, αδικώντας τις κόρες που έπαιρναν τα άγονα στην θάλασσα. Να που τώρα αντιστράφηκαν οι όροι και τα άγονα κοντά στην θάλασσα έγιναν τουριστικά οικόπεδα τεράστιας αξίας. Τα αγόρια πήγαιναν τις αδελφές τους στα δικαστήρια διεκδικώντας "δίκαιη μοιρασιά". Τι σου είναι ο άνθρωπος.


Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 10655
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Μοιρασιά

#4

Μη αναγνωσμένη δημοσίευση από george visvikis » Τρί Απρ 07, 2020 11:00 am

KARKAR έγραψε:
Παρ Απρ 03, 2020 9:35 am
Μοιρασιά.png \bigstar Ο πατέρας άφησε στον γιο το μπλε μέρος του τραπεζίου οικοπέδου ,

ενώ στην κόρη το ροζ . Δείξτε ότι δεν έκανε δίκαιη μοιρασιά .
Ας συμβολίσουμε με (E) το εμβαδόν της ροζ περιοχής και με (S) της γαλάζιας.
Μοιρασιά.png
Μοιρασιά.png (16.64 KiB) Προβλήθηκε 285 φορές
Είναι γνωστό ότι \boxed{(OAB) = (OCD)} (εφαρμογή του σχολικού βιβλίου) και \boxed{{(OAB)^2} = (OAD)(OBC)}

\displaystyle (E) = 2(OAB) = 2\sqrt {(OAD)(OBC)}  \le (OAD) + (OBC) \Leftrightarrow (E) \le (S) με την ισότητα να ισχύει

όταν (OAD)=(OBC). Αυτό όμως συμβαίνει μόνο στο παραλληλόγραμμο. Άρα, \boxed{(E)<(S)} Η μοιρασιά είναι λοιπόν άδικη.



ΠΑΡΑΤΗΡΗΣΗ: Αυτό όμως που έχει ιδιαίτερο ενδιαφέρον είναι το μέγεθος της αδικίας. Όσο πιο πολύ πλησιάζουν τα

εμβαδά των τριγώνων OBC, OAD, τόσο μικρότερη είναι η αδικία. Αν π.χ (OBC)=99, (OAD)=100, τότε

\displaystyle (S) = 199 και \displaystyle (E) = 60\sqrt {11}  \simeq 198,997, οπότε δεν συζητάμε καν για αδικία. Αν όμως (OBC)=1, (OAD)=400,

τότε \displaystyle (S) = 401 και \displaystyle (E) =40, όπου το μέγεθος της αδικίας είναι τεράστιο.


Mihalis_Lambrou
Επιμελητής
Δημοσιεύσεις: 13493
Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am

Re: Μοιρασιά

#5

Μη αναγνωσμένη δημοσίευση από Mihalis_Lambrou » Τρί Απρ 07, 2020 12:25 pm

Αλλιώς: Θα δούμε ότι ο γιος παίρνει παραπάνω από το μισό του εμβαδού, και άρα ευνοείται.

Έστω x το ύψος του κάτω (μεγάλου) μπλε τριγώνου και y του πάνω. Εύκολα βλέπουμε από την a>b ότι ισχύει x>y (π.χ. από το θεώρημα Θαλή στις παράλληλες AB, CD). Ισχυρίζομαι ότι

\displaystyle{\dfrac {1}{2}ax + \dfrac {1}{2}by > \dfrac {1}{2}\cdot \frac {1}{2}(a+b)(x+y)}

Πράγματι αυτό ισοδυναμεί με την αληθή a(x-y) > b(x-y). Και λοιπά.


Απάντηση

Επιστροφή σε “ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Β'”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης