Πέντε παρά .. κάτι

Συντονιστής: ΣΤΑΘΗΣ ΚΟΥΤΡΑΣ

Γιώργος Μήτσιος
Δημοσιεύσεις: 1028
Εγγραφή: Κυρ Ιούλ 01, 2012 10:14 am
Τοποθεσία: Aρτα

Πέντε παρά .. κάτι

#1

Μη αναγνωσμένη δημοσίευση από Γιώργος Μήτσιος » Δευ Ιαν 15, 2018 11:22 pm

Καλό βράδυ σε όλους.
15-1-18 Πέντε παρά κάτι.PNG
15-1-18 Πέντε παρά κάτι.PNG (6.33 KiB) Προβλήθηκε 1110 φορές
Το τρίγωνο ABC έχει AC=5k..AB=6k και BC=9k (ας πούμε .. :) ..k=2018) .

Η κάθετη προς την AB στο A τέμνει την διχοτόμο CE στο M.

Να υπολογιστεί ο λόγος \dfrac{\left ( BAC \right )}{\left ( AME \right )}. Ευχαριστώ, Γιώργος



Λέξεις Κλειδιά:
Άβαταρ μέλους
Doloros
Επιμελητής
Δημοσιεύσεις: 6567
Εγγραφή: Τρί Αύγ 07, 2012 4:09 am
Τοποθεσία: Ιεράπετρα Κρήτης

Re: Πέντε παρά .. κάτι

#2

Μη αναγνωσμένη δημοσίευση από Doloros » Τρί Ιαν 16, 2018 5:04 am

Γιώργος Μήτσιος έγραψε:
Δευ Ιαν 15, 2018 11:22 pm
Καλό βράδυ σε όλους.
15-1-18 Πέντε παρά κάτι.PNG
Το τρίγωνο ABC έχει AC=5k..AB=6k και BC=9k (ας πούμε .. :) ..k=2018) .

Η κάθετη προς την AB στο A τέμνει την διχοτόμο CE στο M.

Να υπολογιστεί ο λόγος \dfrac{\left ( BAC \right )}{\left ( AME \right )}. Ευχαριστώ, Γιώργος
Πέντε παρα κάτι.png
Πέντε παρα κάτι.png (30.26 KiB) Προβλήθηκε 1077 φορές
\boxed{\dfrac{{10\sqrt 2 }}{{\dfrac{{225\sqrt 2 }}{{112}}}} = \dfrac{{224}}{{45}}}


Edit: Άρση απόκρυψης
τελευταία επεξεργασία από Doloros σε Τρί Ιαν 16, 2018 12:16 pm, έχει επεξεργασθεί 1 φορά συνολικά.


Άβαταρ μέλους
Μιχάλης Νάννος
Επιμελητής
Δημοσιεύσεις: 3236
Εγγραφή: Δευ Ιαν 05, 2009 4:09 pm
Τοποθεσία: Σαλαμίνα
Επικοινωνία:

Re: Πέντε παρά .. κάτι

#3

Μη αναγνωσμένη δημοσίευση από Μιχάλης Νάννος » Τρί Ιαν 16, 2018 7:43 am

Γιώργος Μήτσιος έγραψε:
Δευ Ιαν 15, 2018 11:22 pm
Καλό βράδυ σε όλους.

Το τρίγωνο ABC έχει AC=5k..AB=6k και BC=9k (ας πούμε .. :) ..k=2018) .

Η κάθετη προς την AB στο A τέμνει την διχοτόμο CE στο M.

Να υπολογιστεί ο λόγος \dfrac{\left ( BAC \right )}{\left ( AME \right )}. Ευχαριστώ, Γιώργος
Καλημέρα! Ωραία άσκηση Γιώργο!
Σκιαγραφώ τη λύση και αφήνω τις «επίπονες» πράξεις…
shape.png
shape.png (27.04 KiB) Προβλήθηκε 1066 φορές
Φέρω AD \bot CE με N \equiv AD \cap CE. Προφανώς το  \triangleleft CAD είναι ισοσκελές και με θεώρημα Stewart βρίσκουμε AD = \dfrac{{10k}}{3}

Από θεώρημα διχοτόμου είναι AE = \dfrac{{15k}}{{17}}, οπότε από νόμο συνημιτόνων στο  \triangleleft ABC προκύπτει \widehat C = E\widehat AN

Κατόπιν, από Πυθαγόρειο, ομοιότητα βρίσκουμε τις πλευρές του  \triangleleft AME

Τέλος, \dfrac{{(BAC)}}{{(AME)}} = \dfrac{{AC \cdot CB}}{{AM \cdot ME}} =  \ldots  = \dfrac{{224}}{{45}}, δηλαδή πέντε πάρα κάτι ψιλά…


«Δε θα αντικαταστήσει ο υπολογιστής τον καθηγητή...θα αντικατασταθεί ο καθηγητής που δεν ξέρει υπολογιστή...» - Arthur Clarke
Άβαταρ μέλους
Doloros
Επιμελητής
Δημοσιεύσεις: 6567
Εγγραφή: Τρί Αύγ 07, 2012 4:09 am
Τοποθεσία: Ιεράπετρα Κρήτης

Re: Πέντε παρά .. κάτι

#4

Μη αναγνωσμένη δημοσίευση από Doloros » Τρί Ιαν 16, 2018 12:12 pm

Αφού ζητάμε λόγο τη τιμή του k δεν επηρεάζει και άρα υποθέτω k = 1.

Αν T το συμμετρικό του A ως προς τη διχοτόμο θα είναι BT = 4\,\,\kappa \alpha \iota \,\,TC = 5.

Αν δε η τομή των CE\,\,\kappa \alpha \iota \,\,AT\,\, είναι το σημείο K , θέτω AK = KT = y.

Μα τότε τα τρίγωνα TBA\,\,\kappa \alpha \iota \,ABC είναι όμοια αφού έχουν την \widehat B κοινή και

\boxed{\frac{{TB}}{{BA}} = \frac{{AB}}{{BC}} = \frac{2}{3}}. Από την ομοιότητα αυτή έχω : \boxed{\frac{{AT}}{{AC}} = \frac{{AC}}{{AB}} \Rightarrow 2y = AT = \frac{{10}}{3}}

Επίσης \widehat \theta  = \widehat C\,\,( = \widehat {{\omega _1}} + \widehat {{\omega _2}}) = \widehat {AMK} \Rightarrow \boxed{\widehat \omega  = \widehat {{\omega _1}}} . Άρα το M είναι το περίκεντρο του \vartriangle ATC

Θέτω ακόμα : AE = x,\,\,AM = MB = R\,\,.
Πέντε παρα κάτι.png
Πέντε παρα κάτι.png (28.89 KiB) Προβλήθηκε 1042 φορές
Έχω τώρα (ATC) = yKC = \dfrac{{2y \cdot 25}}{{4R}} \Rightarrow KC = \dfrac{{25}}{{2R}} και άρα :

K{C^2} = \dfrac{{{{25}^2}}}{{4{R^2}}} = A{C^2} - A{K^2} \Rightarrow \boxed{{R^2} = \frac{{9 \cdot 25}}{{2 \cdot 16}}}\,\,\,(1)

Από την άλλη μεριά και τη ομοιότητα των τριγώνων MEA\,\,\kappa \alpha \iota \,\,AEK έχω :

\dfrac{{AM}}{{EM}} = \dfrac{{AK}}{{AE}} \Rightarrow \boxed{EM = \dfrac{{Ry}}{x}}\,\,(2) Τέλος από το Θ. διχοτόμων \boxed{x = \frac{{15}}{7}}\,\,(3) .

Έτσι έχω: \dfrac{{(ABC)}}{{(AME)}} = \dfrac{{CA \cdot CB}}{{MA \cdot ME}} = \dfrac{{45}}{{R\dfrac{{Rx}}{y}}} = \dfrac{{45y}}{{x{R^2}}} = \dfrac{{45 \cdot \dfrac{5}{3}}}{{\dfrac{{15}}{7} \cdot \dfrac{{9 \cdot 25}}{{2 \cdot 16}}}} = \dfrac{{224}}{{45}}


Παρατήρησ: Αν φέρουμε το ύψος AH του τριγώνου ABC έχουμε μια ακόμη καλή λύση υπολογίζοντας τα εμβαδά με τον κλασσικό τύπο.


Άβαταρ μέλους
Doloros
Επιμελητής
Δημοσιεύσεις: 6567
Εγγραφή: Τρί Αύγ 07, 2012 4:09 am
Τοποθεσία: Ιεράπετρα Κρήτης

Re: Πέντε παρά .. κάτι

#5

Μη αναγνωσμένη δημοσίευση από Doloros » Τρί Ιαν 16, 2018 1:52 pm

Πέντε παρα κάτι_αλλιώς.png
Πέντε παρα κάτι_αλλιώς.png (32.82 KiB) Προβλήθηκε 1018 φορές
Τύπος Ηρωνα : (ABC) = 10\sqrt 2 \,\,\,\kappa \alpha \iota \,\,2s = a + b + c = 20 \Rightarrow \boxed{r = \sqrt 2 }

Ακόμα EA = \dfrac{{15}}{7}\,\, Θ. διχοτόμων και TA = s - 9 = 1.

Αν I το έγκεντρο και Z,H,T τα σημεία επαφής του εγγεγραμμένου κύκλου με τις

Πλευρές BC,CA,AB θα είναι

\dfrac{{IT}}{{AM}} = \dfrac{{ET}}{{EA}} \Rightarrow \dfrac{{\sqrt 2 }}{{AM}} = \dfrac{{\dfrac{{15}}{7} - 1}}{{\dfrac{{15}}{7}}} \Rightarrow \boxed{AM = \dfrac{{15\sqrt 2 }}{8}},

Τα υπόλοιπα απλά


Άβαταρ μέλους
Μιχάλης Νάννος
Επιμελητής
Δημοσιεύσεις: 3236
Εγγραφή: Δευ Ιαν 05, 2009 4:09 pm
Τοποθεσία: Σαλαμίνα
Επικοινωνία:

Re: Πέντε παρά .. κάτι

#6

Μη αναγνωσμένη δημοσίευση από Μιχάλης Νάννος » Τρί Ιαν 16, 2018 11:15 pm

Γιώργος Μήτσιος έγραψε:
Δευ Ιαν 15, 2018 11:22 pm
Καλό βράδυ σε όλους.

Το τρίγωνο ABC έχει AC=5k..AB=6k και BC=9k (ας πούμε .. :) ..k=1) .

Η κάθετη προς την AB στο A τέμνει την διχοτόμο CE στο M.

Να υπολογιστεί ο λόγος \dfrac{\left ( BAC \right )}{\left ( AME \right )}. Ευχαριστώ, Γιώργος
Για λίγο πιο «ανθρώπινα» νούμερα…
sol2.png
sol2.png (22.29 KiB) Προβλήθηκε 986 φορές
Για BD \bot CE,\,N \equiv CE \cap BD ο Stewart δίνει BD = BA = 6, οπότε  \triangleleft BDA \sim  \triangleleft CBD και \angle C = \angle ABD = \angle AME = 2\omega

Από Π.Θ. στο  \triangleleft BEN:NE = \dfrac{{12\sqrt 2 }}{7} και μετά υπολογίζουμε το (BEN), άρα και το εμβαδόν του όμοιού του MEA

Γνωρίζοντας το \sin 2\omega βρίσκουμε το (ABC), οπότε υπολογίζουμε και το ζητούμενο λόγο…


«Δε θα αντικαταστήσει ο υπολογιστής τον καθηγητή...θα αντικατασταθεί ο καθηγητής που δεν ξέρει υπολογιστή...» - Arthur Clarke
Μιχάλης Τσουρακάκης
Δημοσιεύσεις: 1615
Εγγραφή: Παρ Ιαν 11, 2013 4:17 am
Τοποθεσία: Ηράκλειο Κρήτης

Re: Πέντε παρά .. κάτι

#7

Μη αναγνωσμένη δημοσίευση από Μιχάλης Τσουρακάκης » Τρί Ιαν 16, 2018 11:50 pm

Γιώργος Μήτσιος έγραψε:
Δευ Ιαν 15, 2018 11:22 pm
Καλό βράδυ σε όλους.
15-1-18 Πέντε παρά κάτι.PNG
Το τρίγωνο ABC έχει AC=5k..AB=6k και BC=9k (ας πούμε .. :) ..k=2018) .

Η κάθετη προς την AB στο A τέμνει την διχοτόμο CE στο M.

Να υπολογιστεί ο λόγος \dfrac{\left ( BAC \right )}{\left ( AME \right )}. Ευχαριστώ, Γιώργος

Ας είναι κ=1 Από θ.διχοτόμου έχουμε \displaystyle AE = \frac{{15}}{7} και \displaystyle BE = \frac{{42}}{7}

Το ημικύκλιο διαμέτρου \displaystyle AC τέμνει τη διχοτόμο στο \displaystyle Z και την \displaystyle BC στο \displaystyle D

Είναι \displaystyle CI = 5 \Rightarrow BI = 4 και \displaystyle A{B^2} = 36 = BI \cdot BC = 4 \cdot 9 = 36 \Rightarrow \angle BAI = \angle AME = 2\omega

άρα \displaystyle \vartriangle AEM \simeq \vartriangle ADC

Από Ήρωνα είναι \displaystyle \left( {ABC} \right) = 10\sqrt 2  \Rightarrow AD = \frac{{20\sqrt 2 }}{9} κι από Π.Θ στο \displaystyle \vartriangle ADC \Rightarrow DC = \frac{{35}}{9}

\displaystyle \frac{{EM}}{{AC}} = \frac{{EA}}{{AD}} = \frac{{AM}}{{DC}} \Rightarrow EM = \frac{{EA \cdot AC}}{{AD}} και \displaystyle AM = \frac{{EA \cdot DC}}{{AD}}

\displaystyle \boxed{\frac{{\left( {ABC} \right)}}{{\left( {AME} \right)}} = \frac{{AC \cdot BC}}{{EM \cdot AM}} = ...{{\left( {\frac{{AD}}{{EA}}} \right)}^2} \cdot \frac{{BC}}{{DC}} = ...\frac{{224}}{{45}}}
πέντε παρά κάτι.png
πέντε παρά κάτι.png (11.74 KiB) Προβλήθηκε 979 φορές


Άβαταρ μέλους
Μιχάλης Νάννος
Επιμελητής
Δημοσιεύσεις: 3236
Εγγραφή: Δευ Ιαν 05, 2009 4:09 pm
Τοποθεσία: Σαλαμίνα
Επικοινωνία:

Re: Πέντε παρά .. κάτι

#8

Μη αναγνωσμένη δημοσίευση από Μιχάλης Νάννος » Τετ Ιαν 17, 2018 6:47 am

Γιώργος Μήτσιος έγραψε:
Δευ Ιαν 15, 2018 11:22 pm
Καλό βράδυ σε όλους.

Το τρίγωνο ABC έχει AC=5k..AB=6k και BC=9k (ας πούμε .. :) ..k=1 ) .

Η κάθετη προς την AB στο A τέμνει την διχοτόμο CE στο M.

Να υπολογιστεί ο λόγος \dfrac{\left ( BAC \right )}{\left ( AME \right )}. Ευχαριστώ, Γιώργος
Μια "γιαπωνέζικη" λύση...
japan.png
japan.png (14.03 KiB) Προβλήθηκε 967 φορές
{5^2} - {x^2}\mathop  = \limits^{K{C^2}} {9^2} - {(6 + x)^2} \Leftrightarrow x = \dfrac{5}{3}

 \triangleleft KCE \sim  \triangleleft AME \Rightarrow \dfrac{{KC}}{{AM}} = \left( {\dfrac{{15}}{7} + \dfrac{5}{3}} \right):\dfrac{{15}}{7} = \dfrac{{16}}{9}

\dfrac{{(BAC)}}{{(AME)}} = \dfrac{{AB \cdot KC}}{{AE \cdot AM}} = \dfrac{{224}}{{45}}


«Δε θα αντικαταστήσει ο υπολογιστής τον καθηγητή...θα αντικατασταθεί ο καθηγητής που δεν ξέρει υπολογιστή...» - Arthur Clarke
Γιώργος Μήτσιος
Δημοσιεύσεις: 1028
Εγγραφή: Κυρ Ιούλ 01, 2012 10:14 am
Τοποθεσία: Aρτα

Re: Πέντε παρά .. κάτι

#9

Μη αναγνωσμένη δημοσίευση από Γιώργος Μήτσιος » Πέμ Ιαν 18, 2018 1:03 am

Καλημέρα σε όλους ! Ευχαριστώ θερμά τους Νίκο, Μιχάλη και Μιχάλη για την ..άκρα περιποίηση του θέματος με τις υπέροχες λύσεις τους !
Θαυμάσια για την κομψότητά της και η τελευταία - με Ιαπωνική τεχνολογία αιχμής- λύση του Μιχάλη !
Πριν αναρτήσω βοηθητική πρόταση που ήταν η αιτία-αφετηρία για την δημιουργία του παρόντος θα πρότεινα να ..τακτοποιήσουμε
και το νέο θέμα ΑΥΤΟ που βασίζεται στην ίδια πρόταση.
Η πρόταση αυτή που θα ακολουθήσει , αφορά ισοδυναμία σχέσης των πλευρών τριγώνου αφενός με σχέση των μέτρων των γωνιών του , αφετέρου.

Φιλικά , Γιώργος


Γιώργος Μήτσιος
Δημοσιεύσεις: 1028
Εγγραφή: Κυρ Ιούλ 01, 2012 10:14 am
Τοποθεσία: Aρτα

Re: Πέντε παρά .. κάτι

#10

Μη αναγνωσμένη δημοσίευση από Γιώργος Μήτσιος » Σάβ Ιαν 20, 2018 3:13 am

Χαιρετώ. Ας υποβάλω και προσωπική λύση :
20-1-18 Πέντε παρά κάτι.PNG
20-1-18 Πέντε παρά κάτι.PNG (6.09 KiB) Προβλήθηκε 860 φορές
Για τις πλευρές του τριγώνου ABC ισχύει a^{2}=ab+c^{2}. Σύμφωνα με τη βοηθητική πρόταση(*) είναι \widehat{A}=90^{0}+\widehat{C}/2.

Τότε M\widehat{A}C=\widehat{C}/2 άρα MC=MA και A\widehat{M}E=\widehat{C}.

Έχουμε cosC=7/9 άρα \dfrac{MC}{ME}=\dfrac{MA}{ME}=\dfrac{7}{9}\Rightarrow \dfrac{CE}{ME}=\dfrac{16}{9} ενώ από το Θ.διχοτόμου παίρνουμε \dfrac{AB}{AE}=\dfrac{14}{5}.

Συνεπώς \left ( ABC \right )=\dfrac{16}{9}\left ( BAM \right )=\dfrac{16}{9}\cdot \dfrac{14}{5}\left ( AME \right )\Rightarrow \dfrac{\left ( BAC \right )}{\left ( AME \right )}=\dfrac{224}{45}

(*) Βοηθητική πρόταση Σε τρίγωνο ABC ισχύει η ισοδυναμία :a^{2}=ab+c^{2}\Leftrightarrow \widehat{A}=90^{0}+\widehat{C}/2

Πρέπει να πω ότι η σχέση μου προέκυψε στην τριάδα \left ( a,b,c \right )=\left ( 9,5,6 \right )
και σκέφτηκα να τη γενικεύσω , να εξετάσω το αντίστροφο και στην συνέχεια να μοιραστώ την πρόταση αυτή μαζί σας !
Θεωρώ πολύ πιθανόν -εφόσον είναι αληθής- να κυκλοφορεί ήδη.. Προτίθεμαι βεβαίως να γράψω την προσωπική απόδειξη αυτής
αν στο ενδιάμεσο χρονικό διάστημα δεν έχει καλυφθεί... Φιλικά Γιώργος.


Άβαταρ μέλους
george visvikis
Επιμελητής
Δημοσιεύσεις: 8155
Εγγραφή: Παρ Νοέμ 01, 2013 9:35 am

Re: Πέντε παρά .. κάτι

#11

Μη αναγνωσμένη δημοσίευση από george visvikis » Σάβ Ιαν 20, 2018 10:43 am

Γιώργος Μήτσιος έγραψε:
Σάβ Ιαν 20, 2018 3:13 am

(*) Βοηθητική πρόταση Σε τρίγωνο ABC ισχύει η ισοδυναμία :a^{2}=ab+c^{2}\Leftrightarrow \widehat{A}=90^{0}+\widehat{C}/2

Πρέπει να πω ότι η σχέση μου προέκυψε στην τριάδα \left ( a,b,c \right )=\left ( 9,5,6 \right )
και σκέφτηκα να τη γενικεύσω , να εξετάσω το αντίστροφο και στην συνέχεια να μοιραστώ την πρόταση αυτή μαζί σας !
Θεωρώ πολύ πιθανόν -εφόσον είναι αληθής- να κυκλοφορεί ήδη.. Προτίθεμαι βεβαίως να γράψω την προσωπική απόδειξη αυτής
αν στο ενδιάμεσο χρονικό διάστημα δεν έχει καλυφθεί... Φιλικά Γιώργος.
Καλημέρα σε όλους!

Ενδιαφέρουσα πρόταση!
Πρόταση.ΓΜ.png
Πρόταση.ΓΜ.png (12.08 KiB) Προβλήθηκε 842 φορές
Έστω I το έγκεντρο του τριγώνου. \displaystyle \widehat A = {90^0} + \frac{{\widehat C}}{2} \Leftrightarrow \widehat A = A\widehat IB \Leftrightarrow B\widehat AI = A\widehat EB = \frac{{\widehat A}}{2}, που σημαίνει ότι

η AB εφάπτεται στον περίκυκλο του τριγώνου AIE. Άρα: \boxed{{c^2} = BI \cdot BE} (1)

Αλλά, \displaystyle \frac{{BI}}{{BE}} = \frac{{a + c}}{{a + b + c}}\mathop  \Leftrightarrow \limits^{(1)} {c^2} = \frac{{a + c}}{{a + b + c}}B{E^2} = \frac{{a + c}}{{a + b + c}}\left( {ac - \frac{{{b^2}}}{{{{(a + c)}^2}}}} \right) \Leftrightarrow

\displaystyle {c^2} = \frac{{(a + c)ac(a + b + c)(a + c - b)}}{{(a + b + c){{(a + c)}^2}}} = \frac{{ac(a + c - b)}}{{(a + c)}} \Leftrightarrow \boxed{a^2=ab+c^2}

Το αντίστροφο προκύπτει ακολουθώντας αντίστροφη πορεία.


Άβαταρ μέλους
Doloros
Επιμελητής
Δημοσιεύσεις: 6567
Εγγραφή: Τρί Αύγ 07, 2012 4:09 am
Τοποθεσία: Ιεράπετρα Κρήτης

Re: Πέντε παρά .. κάτι

#12

Μη αναγνωσμένη δημοσίευση από Doloros » Δευ Ιαν 22, 2018 12:43 pm

Γιώργος Μήτσιος έγραψε:
Σάβ Ιαν 20, 2018 3:13 am

(*) Βοηθητική πρόταση Σε τρίγωνο ABC ισχύει η ισοδυναμία :a^{2}=ab+c^{2}\Leftrightarrow \widehat{A}=90^{0}+\widehat{C}/2

Πρέπει να πω ότι η σχέση μου προέκυψε στην τριάδα \left ( a,b,c \right )=\left ( 9,5,6 \right )
και σκέφτηκα να τη γενικεύσω , να εξετάσω το αντίστροφο και στην συνέχεια να μοιραστώ την πρόταση αυτή μαζί σας !
Θεωρώ πολύ πιθανόν -εφόσον είναι αληθής- να κυκλοφορεί ήδη.. Προτίθεμαι βεβαίως να γράψω την προσωπική απόδειξη αυτής
αν στο ενδιάμεσο χρονικό διάστημα δεν έχει καλυφθεί... Φιλικά Γιώργος.

Έστω {a^2} = ab + {c^2} και τα σημεία M,E εσωτερικά και εξωτερικά του BC για τα οποία :

BM = BE = c . Γράφω το ημικύκλιο διαμέτρου EM που θα περνά από το A και έστω Z το άλλο σημείο τομής του με την ευθεία CA.

Θα έχουμε ταυτόχρονα:

\left\{ \begin{gathered} 
  {a^2} = ab + {c^2} \hfill \\ 
  CM \cdot CE = CA \cdot CZ \hfill \\  
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered} 
  {a^2} = ab + {c^2} \hfill \\ 
  (a - c)(a + c) = b \cdot CZ \hfill \\  
\end{gathered}  \right. \Rightarrow \boxed{CZ = a} .

Πρόταση από  Μίτσιου.png
Πρόταση από Μίτσιου.png (17.37 KiB) Προβλήθηκε 765 φορές
Τώρα τα ισοσκελή τρίγωνα CBZ\,\,\kappa \alpha \iota \,\,BAZ είναι ισογώνια αφού έχουν κοινή τη

γωνία \widehat Z και μάλιστα \widehat Z = \widehat \omega  + \widehat \theta  = \widehat C + \widehat B\,\,\,(1) Η γωνία \widehat {BAC} ως εξωτερική στο τρίγωνο BAZ θα είναι και λόγω της (1):

A = (\omega  + \theta ) + \theta  \Leftrightarrow 2A = 180^\circ  + C \Leftrightarrow \boxed{A = 90^\circ  + \frac{C}{2}}.

Το αντίστροφο τώρα απλό.


Γιώργος Μήτσιος
Δημοσιεύσεις: 1028
Εγγραφή: Κυρ Ιούλ 01, 2012 10:14 am
Τοποθεσία: Aρτα

Re: Πέντε παρά .. κάτι

#13

Μη αναγνωσμένη δημοσίευση από Γιώργος Μήτσιος » Πέμ Ιαν 25, 2018 12:36 am

Xαιρετώ ! Γιώργο και Νίκο σας ευχαριστώ για τις αποδείξεις της πρότασης αυτής !
Υποβάλλω και την δική μου (παρόμοια με του Νίκου) προσέγγιση:
Απόδειξη πρότασης.PNG
Απόδειξη πρότασης.PNG (7.43 KiB) Προβλήθηκε 713 φορές
Έστω a^{2}=ab+c^{2}\Rightarrow b=a-c^{2}/a< a.Τότε παίρνουμε CD=b \Rightarrow BD=a-b και η αρχική γίνεται

c^{2}=a\left ( a-b \right ) ή AB^{2}=BC\cdot BD άρα η BA εφάπτεται στον κύκλο των A,D,C

οπότε B\widehat{A}D=\widehat{C} ενώ και D\widehat{A}C=90^{0}-\widehat{C}/2 επομένως B\widehat{A}C=90^{0}+\widehat{C}/2.


Ας είναι τώρα B\widehat{A}C=90^{0}+\widehat{C}/2 \Rightarrow a> b.Ομοίως παίρνουμε CD=b \Rightarrow BD=a-b.

Έπεται D\widehat{A}C=90^{0}-\widehat{C}/2.Τότε B\widehat{A}D=\widehat{A}-D\widehat{A}C=\widehat{C} δηλ η BA εφάπτεται στον κύκλο των A,D,C

οπότε AB^{2}=BC\cdot BD \Leftrightarrow c^{2}=a\left ( a-b \right ) ή a^{2}=ab+c^{2}.

Aς δούμε μια εφαρμογή της πρότασης με (το γνωστό) ..χρυσό αποτέλεσμα :

Αν σε τρίγωνο ABC είναι \widehat{B}=\widehat{C}=36^{0} τότε \dfrac{a}{c}=\Phi

Πράγματι έχουμε a>b=c και B\widehat{A}C =108^{0}=90^{0}+\widehat{C}/2 οπότε, σύμφωνα με την πρόταση

ισχύει a^{2}=ab+c^{2}\Rightarrow a^{2}=ac+c^{2}. Διαιρούμε με c^{2}\neq 0

και παίρνουμε \left (\dfrac{a}{c}  \right )^{2}-\left ( \dfrac{a}{c} \right )-1=0 συνεπώς \dfrac{a}{c}=\dfrac{\sqrt{5}+1}{2}=\Phi ... \Phi ιλικά Γιώργος.


Απάντηση

Επιστροφή σε “ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Β'”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης