![\displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{x+4n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = 0 } \displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{x+4n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = 0 }](/forum/ext/geomar/texintegr/latexrender/pictures/ed5dc28d7cc98c5a91c6a6f3fd1d375f.png)
Οριζιακή ... εξίσωση
Συντονιστής: Demetres
Κανόνες Δ. Συζήτησης
Ασκήσεις μαθηματικών προπτυχιακού επιπέδου στις οποίες πρέπει, επιπλέον, να υπάρχει καταληκτική ημερομηνία. Μέχρι αυτήν την ημερομηνία οι απαντήσεις δίνονται ΜΟΝΟ από φοιτητές. Μετά το πέρας αυτής, μπορούν να απαντήσουν όλα τα μέλη.
Ασκήσεις μαθηματικών προπτυχιακού επιπέδου στις οποίες πρέπει, επιπλέον, να υπάρχει καταληκτική ημερομηνία. Μέχρι αυτήν την ημερομηνία οι απαντήσεις δίνονται ΜΟΝΟ από φοιτητές. Μετά το πέρας αυτής, μπορούν να απαντήσουν όλα τα μέλη.
- Tolaso J Kos
- Δημοσιεύσεις: 5379
- Εγγραφή: Κυρ Αύγ 05, 2012 10:09 pm
- Τοποθεσία: International
- Επικοινωνία:
Οριζιακή ... εξίσωση
Να επιλυθεί η εξίσωση:
![\displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{x+4n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = 0 } \displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{x+4n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = 0 }](/forum/ext/geomar/texintegr/latexrender/pictures/ed5dc28d7cc98c5a91c6a6f3fd1d375f.png)
![\displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{x+4n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = 0 } \displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{x+4n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = 0 }](/forum/ext/geomar/texintegr/latexrender/pictures/ed5dc28d7cc98c5a91c6a6f3fd1d375f.png)
Η φαντασία είναι σημαντικότερη από τη γνώση !
![\displaystyle{{\color{blue}\mathbf{Life=\int_{birth}^{death}\frac{happiness}{time}\Delta time} }} \displaystyle{{\color{blue}\mathbf{Life=\int_{birth}^{death}\frac{happiness}{time}\Delta time} }}](/forum/ext/geomar/texintegr/latexrender/pictures/2d491a8c8631e3791b1eb531d77654a7.png)
![\displaystyle{{\color{blue}\mathbf{Life=\int_{birth}^{death}\frac{happiness}{time}\Delta time} }} \displaystyle{{\color{blue}\mathbf{Life=\int_{birth}^{death}\frac{happiness}{time}\Delta time} }}](/forum/ext/geomar/texintegr/latexrender/pictures/2d491a8c8631e3791b1eb531d77654a7.png)
Λέξεις Κλειδιά:
Re: Οριζιακή ... εξίσωση
Έχουμε:
![\displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{(x+4n)+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = \begin{vmatrix}
\frac{(x+2)+5}{5 \left ( x+2 \right )} & \frac{(x+4)+7}{7 \left ( x+4 \right )} & \frac{(x+6)+9}{9 \left ( x+6 \right )} & \cdots & \frac{(x+2n)+2n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} }= \displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{(x+4n)+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = \begin{vmatrix}
\frac{(x+2)+5}{5 \left ( x+2 \right )} & \frac{(x+4)+7}{7 \left ( x+4 \right )} & \frac{(x+6)+9}{9 \left ( x+6 \right )} & \cdots & \frac{(x+2n)+2n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} }=](/forum/ext/geomar/texintegr/latexrender/pictures/9b954727efc66c1d8c4e94525da0bf52.png)
![\displaystyle{\begin{vmatrix}
\frac{1}{5}+\frac{1}{x+2} & \frac{1}{7}+\frac{1}{x+4} & \frac{1}{9}+\frac{1}{x+6} & \cdots & \frac{1}{2n+3}+\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}=\displaystyle{\begin{vmatrix}
\frac{1}{x+2} & \frac{1}{x+4} & \frac{1}{x+6} & \cdots &\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}= \displaystyle{\begin{vmatrix}
\frac{1}{5}+\frac{1}{x+2} & \frac{1}{7}+\frac{1}{x+4} & \frac{1}{9}+\frac{1}{x+6} & \cdots & \frac{1}{2n+3}+\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}=\displaystyle{\begin{vmatrix}
\frac{1}{x+2} & \frac{1}{x+4} & \frac{1}{x+6} & \cdots &\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}=](/forum/ext/geomar/texintegr/latexrender/pictures/1bcdff83c8119d344b0c1b4dd5166f0a.png)
![=\displaystyle \frac{A_1}{x+2}+\ldots +\frac{A_n}{x+2n}=\frac{A_1(x+4)\cdots (x+2n)+\ldots +A_n(x+2)\cdots (x+2n-2)}{(x+2)\cdots (x+2n)}=\frac{P(x)}{(x+2)\cdots (x+2n)} =\displaystyle \frac{A_1}{x+2}+\ldots +\frac{A_n}{x+2n}=\frac{A_1(x+4)\cdots (x+2n)+\ldots +A_n(x+2)\cdots (x+2n-2)}{(x+2)\cdots (x+2n)}=\frac{P(x)}{(x+2)\cdots (x+2n)}](/forum/ext/geomar/texintegr/latexrender/pictures/4a9e96eb68ac4b00de78060af180a28e.png)
Παρατηρούμε ότι οι
είναι ρίζες της δοσμένης εξίσωσης, επομένως και του
.
Επειδή
, αν δείξουμε ότι
, έχουμε ότι οι πάνω είναι οι μοναδικές ρίζες της εξίσωσης.
Πράγματι, δείχνουμε ότι
ή ισοδύναμα ότι ο πίνακας
![\displaystyle{\begin{bmatrix}
\frac{1}{3} & \frac{1}{5} & \frac{1}{7} & \cdots &\frac{1}{2n+1} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{bmatrix} \displaystyle{\begin{bmatrix}
\frac{1}{3} & \frac{1}{5} & \frac{1}{7} & \cdots &\frac{1}{2n+1} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{bmatrix}](/forum/ext/geomar/texintegr/latexrender/pictures/ba8440b961d279a365f6726077783553.png)
είναι αντιστρέψιμος.
Αν
λύση του αντίστοιχου ομογενούς γραμμικού συστήματος, τότε απαλείφοντας παρονομαστές σε κάθε εξίσωση,
προκύπτει ότι το πολυώνυμο![\displaystyle Q(x)=\sum_{i=0}^{n-1}\frac{x_i}{x-2i}\prod_{j=0}^{n-1} (x-2j) \displaystyle Q(x)=\sum_{i=0}^{n-1}\frac{x_i}{x-2i}\prod_{j=0}^{n-1} (x-2j)](/forum/ext/geomar/texintegr/latexrender/pictures/40b9a61f914be95631c9f50012cee30a.png)
μηδενίζει για
. Όμως
, άρα
.
Βάζοντας διαδοχικά
, παίρνουμε
, όπως θέλαμε.
![\displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{(x+4n)+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = \begin{vmatrix}
\frac{(x+2)+5}{5 \left ( x+2 \right )} & \frac{(x+4)+7}{7 \left ( x+4 \right )} & \frac{(x+6)+9}{9 \left ( x+6 \right )} & \cdots & \frac{(x+2n)+2n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} }= \displaystyle{\begin{vmatrix}
\frac{x+7}{5 \left ( x+2 \right )} & \frac{x+11}{7 \left ( x+4 \right )} & \frac{x+15}{9 \left ( x+6 \right )} & \cdots & \frac{(x+4n)+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} = \begin{vmatrix}
\frac{(x+2)+5}{5 \left ( x+2 \right )} & \frac{(x+4)+7}{7 \left ( x+4 \right )} & \frac{(x+6)+9}{9 \left ( x+6 \right )} & \cdots & \frac{(x+2n)+2n+3}{\left ( 2n+3 \right ) \left ( x+2n \right )} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix} }=](/forum/ext/geomar/texintegr/latexrender/pictures/9b954727efc66c1d8c4e94525da0bf52.png)
![\displaystyle{\begin{vmatrix}
\frac{1}{5}+\frac{1}{x+2} & \frac{1}{7}+\frac{1}{x+4} & \frac{1}{9}+\frac{1}{x+6} & \cdots & \frac{1}{2n+3}+\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}=\displaystyle{\begin{vmatrix}
\frac{1}{x+2} & \frac{1}{x+4} & \frac{1}{x+6} & \cdots &\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}= \displaystyle{\begin{vmatrix}
\frac{1}{5}+\frac{1}{x+2} & \frac{1}{7}+\frac{1}{x+4} & \frac{1}{9}+\frac{1}{x+6} & \cdots & \frac{1}{2n+3}+\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}=\displaystyle{\begin{vmatrix}
\frac{1}{x+2} & \frac{1}{x+4} & \frac{1}{x+6} & \cdots &\frac{1}{x+2n} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{vmatrix}=](/forum/ext/geomar/texintegr/latexrender/pictures/1bcdff83c8119d344b0c1b4dd5166f0a.png)
![=\displaystyle \frac{A_1}{x+2}+\ldots +\frac{A_n}{x+2n}=\frac{A_1(x+4)\cdots (x+2n)+\ldots +A_n(x+2)\cdots (x+2n-2)}{(x+2)\cdots (x+2n)}=\frac{P(x)}{(x+2)\cdots (x+2n)} =\displaystyle \frac{A_1}{x+2}+\ldots +\frac{A_n}{x+2n}=\frac{A_1(x+4)\cdots (x+2n)+\ldots +A_n(x+2)\cdots (x+2n-2)}{(x+2)\cdots (x+2n)}=\frac{P(x)}{(x+2)\cdots (x+2n)}](/forum/ext/geomar/texintegr/latexrender/pictures/4a9e96eb68ac4b00de78060af180a28e.png)
Παρατηρούμε ότι οι
![x=3,5,\ldots , 2n-1 x=3,5,\ldots , 2n-1](/forum/ext/geomar/texintegr/latexrender/pictures/e91c1a5e8251aeca34bc364cb905a8e0.png)
![P(x) P(x)](/forum/ext/geomar/texintegr/latexrender/pictures/c19f6b6a7bae1fd5b14f578c6edc3454.png)
Επειδή
![deg P(x)\leq n-1 deg P(x)\leq n-1](/forum/ext/geomar/texintegr/latexrender/pictures/110087a054c92e2f93bec763d82d0999.png)
![P\neq 0 P\neq 0](/forum/ext/geomar/texintegr/latexrender/pictures/84637859b54cb4ad9686f65b0155efe1.png)
Πράγματι, δείχνουμε ότι
![P(1)\neq 0 P(1)\neq 0](/forum/ext/geomar/texintegr/latexrender/pictures/cdbd0370de3dfe4db41ee18c2a8cec07.png)
![\displaystyle{\begin{bmatrix}
\frac{1}{3} & \frac{1}{5} & \frac{1}{7} & \cdots &\frac{1}{2n+1} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{bmatrix} \displaystyle{\begin{bmatrix}
\frac{1}{3} & \frac{1}{5} & \frac{1}{7} & \cdots &\frac{1}{2n+1} \\\\
\frac{1}{5} & \frac{1}{7} & \frac{1}{9} & \cdots & \frac{1}{2n+3} \\\\
\frac{1}{7}& \frac{1}{9} & \frac{1}{11} & \cdots & \frac{1}{2n+5} \\\\
\vdots & \vdots & \vdots & \ddots & \vdots \\\\
\frac{1}{2n+1} & \frac{1}{2n+3} & \frac{1}{2n+5} & \cdots & \frac{1}{4n-1} \\
\end{bmatrix}](/forum/ext/geomar/texintegr/latexrender/pictures/ba8440b961d279a365f6726077783553.png)
είναι αντιστρέψιμος.
Αν
![(x_1,\ldots , x_n) (x_1,\ldots , x_n)](/forum/ext/geomar/texintegr/latexrender/pictures/1515bb06ada9dd78307b1ef717e301f6.png)
προκύπτει ότι το πολυώνυμο
![\displaystyle Q(x)=\sum_{i=0}^{n-1}\frac{x_i}{x-2i}\prod_{j=0}^{n-1} (x-2j) \displaystyle Q(x)=\sum_{i=0}^{n-1}\frac{x_i}{x-2i}\prod_{j=0}^{n-1} (x-2j)](/forum/ext/geomar/texintegr/latexrender/pictures/40b9a61f914be95631c9f50012cee30a.png)
μηδενίζει για
![x=3,5,\ldots, 2n+1 x=3,5,\ldots, 2n+1](/forum/ext/geomar/texintegr/latexrender/pictures/bcf9fe7588e0c0ee3940d0508c94dbc6.png)
![deg Q(x) < n deg Q(x) < n](/forum/ext/geomar/texintegr/latexrender/pictures/f4ec6a7042435ea0bd777cfd4f1ec49e.png)
![Q=0 Q=0](/forum/ext/geomar/texintegr/latexrender/pictures/cd79ae9b3d9d9b6e92619593f504a922.png)
Βάζοντας διαδοχικά
![x=0,-2,\ldots ,-(2n-2) x=0,-2,\ldots ,-(2n-2)](/forum/ext/geomar/texintegr/latexrender/pictures/520f2f37125d06484d8971fd67ca1469.png)
![(x_1,\ldots , x_n)=(0,\ldots , 0) (x_1,\ldots , x_n)=(0,\ldots , 0)](/forum/ext/geomar/texintegr/latexrender/pictures/010465b907059ef94da77101362764b9.png)
Μέλη σε σύνδεση
Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης