Και πάλι ορθή γωνία

Συντονιστές: vittasko, silouan, Doloros

giannimani
Δημοσιεύσεις: 96
Εγγραφή: Δευ Μαρ 09, 2009 6:26 pm
Τοποθεσία: Αθήνα

Και πάλι ορθή γωνία

#1

Μη αναγνωσμένη δημοσίευση από giannimani » Δευ Νοέμ 12, 2018 9:19 pm

Ο εγγεγραμμένος κύκλος του σκαληνού τριγώνου ABC εφάπτεται των πλευρών BC, AC, AB στα σημεία A_{1}, B_{1}, C_{1} αντίστοιχα.
Η κάθετος της C_{1}B_{1} που άγεται από το A_{1} τέμνει την AB στο σημείο X. Οι περιγεγραμμένοι κύκλοι των τριγώνων ABC και AB_{1}C_{1}
τέμνονται για δεύτερη φορά στο σημείο Z.
Να αποδείξετε ότι\angle XZC_{1}\,=\,90^{\circ}.
ορθη.png
ορθη.png (60.56 KiB) Προβλήθηκε 207 φορές



Λέξεις Κλειδιά:
Άβαταρ μέλους
Doloros
Επιμελητής
Δημοσιεύσεις: 6215
Εγγραφή: Τρί Αύγ 07, 2012 4:09 am
Τοποθεσία: Ιεράπετρα Κρήτης

Re: Και πάλι ορθή γωνία

#2

Μη αναγνωσμένη δημοσίευση από Doloros » Δευ Νοέμ 12, 2018 10:26 pm

giannimani έγραψε:
Δευ Νοέμ 12, 2018 9:19 pm
Ο εγγεγραμμένος κύκλος του σκαληνού τριγώνου ABC εφάπτεται των πλευρών BC, AC, AB στα σημεία A_{1}, B_{1}, C_{1} αντίστοιχα.
Η κάθετος της C_{1}B_{1} που άγεται από το A_{1} τέμνει την AB στο σημείο X. Οι περιγεγραμμένοι κύκλοι των τριγώνων ABC και AB_{1}C_{1}
τέμνονται για δεύτερη φορά στο σημείο Z.
Να αποδείξετε ότι\angle XZC_{1}\,=\,90^{\circ}.ορθη.png
Παραλλαγή άσκησης που έχει τεθεί το 2014 σε διαγωνισμό . Υπάρχει με υπόδειξη στο στο βιβλίο του Μπάμπη Στεργίου Γεωμετρία για διαγωνισμούς 4 ( σελίδα 491)


min##
Δημοσιεύσεις: 148
Εγγραφή: Τρί Απρ 18, 2017 3:40 pm

Re: Και πάλι ορθή γωνία

#3

Μη αναγνωσμένη δημοσίευση από min## » Δευ Νοέμ 12, 2018 11:47 pm

Υποθέτω ότι αυτή υπάρχει και στο βιβλίο:Αν η πολική του X ως προς τον εγγεγραμμένο είναι η l,είναι φανερό ότι περνάει απ'το C1 και ότι τέμνει καθέτως τη IX(I το κέντρο του εγγεγραμμένου).Αν X' η τομή των ευθειών αυτών,το X' είναι το αντίστροφο του X ως προς τον (I).Αντιστρέφοντας ως προς αυτόν τον κύκλο,το εγγράψιμο XX'DC1[λόγω καθετοτήτων(D προβολή του A1 στην B1C1)] πάει στο XX'ZC1 και το ζητούμενο έπεται..


Απάντηση

Επιστροφή σε “Γεωμετρία - Προχωρημένο Επίπεδο (Seniors)”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης