Ελάχιστο εμβαδόν

Συντονιστές: vittasko, silouan, rek2

Άβαταρ μέλους
silouan
Επιμελητής
Δημοσιεύσεις: 1334
Εγγραφή: Τρί Ιαν 27, 2009 10:52 pm

Ελάχιστο εμβαδόν

#1

Μη αναγνωσμένη δημοσίευση από silouan » Πέμ Οκτ 14, 2021 3:44 pm

Με αφορμή αυτό το θέμα https://www.mathematica.gr/forum/viewtopic.php?t=66021
Δίνεται ένας ρόμβος πλευράς 1 και ένα σημείο A εντός αυτού. Κάθε ευθεία που περνά από το A, χωρίζει τον ρόμβο σε δύο περιοχές, E_1 και E_2, και ας πούμε ότι η E_1 έχει μικρότερο εμβαδόν από την E_2. Για ποια θέση της ευθείας γίνεται το E_1 ελάχιστο;


Σιλουανός Μπραζιτίκος

Λέξεις Κλειδιά:
Άβαταρ μέλους
KARKAR
Δημοσιεύσεις: 13127
Εγγραφή: Τετ Δεκ 08, 2010 6:18 pm

Re: Ελάχιστο εμβαδόν

#2

Μη αναγνωσμένη δημοσίευση από KARKAR » Κυρ Νοέμ 21, 2021 12:46 pm

Γκρίζα  ζώνη.png
Γκρίζα ζώνη.png (17.65 KiB) Προβλήθηκε 122 φορές
Έστω OPRQ ο ρόμβος , K το σημείο τομής των διαγωνίων του και M,N τα μέσα των OP ,OQ .

Θα ασχοληθούμε με τις περιπτώσεις που το A βρίσκεται στο εσωτερικό του τραπεζίου ONKP ,

ή επί των KM , KP . Κι αυτό διότι για το υπόλοιπο σχήμα - λόγω συμμετρίας - εργαζόμαστε ομοίως .

Ειδικά αν το A συμπέσει με το K κάθε ευθεία που διέρχεται απ' αυτό διχοτομεί τον ρόμβο .

Αν λοιπόν το A βρίσκεται στο εσωτερικό του ONKM τότε , φέρουμε AA' \parallel QO και θεωρούμε σημείο T

της OP , ώστε : OA'=A'T . Η TAS είναι η ζητούμενη ευθεία ( δες τις αποδείξεις της παραπομπής ) .
Γκρίζα  ζώνη 2.png
Γκρίζα ζώνη 2.png (10.15 KiB) Προβλήθηκε 122 φορές
Αν το A , βρίσκεται στο εσωτερικό του τριγώνου KMP ή επί της KP , τότε η παράλληλη από το A

προς την OP , δίνει το ελάχιστο εμβαδόν .
Γκρίζα  ζώνη 3.png
Γκρίζα ζώνη 3.png (14.33 KiB) Προβλήθηκε 122 φορές
Τέλος αν το A βρίσκεται επί της KM , το ελάχιστο επιτυγχάνεται και με τους δύο τρόπους .


Απάντηση

Επιστροφή σε “Γεωμετρία - Επίπεδο Αρχιμήδη (Seniors)”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης