Εάν είναι συμμετρικά, είναι και ορθολογικά.

Συντονιστές: vittasko, silouan, rek2

vittasko
Επιμελητής
Δημοσιεύσεις: 1981
Εγγραφή: Πέμ Ιαν 08, 2009 8:46 am
Τοποθεσία: Μαρούσι - Αθήνα.

Εάν είναι συμμετρικά, είναι και ορθολογικά.

#1

Μη αναγνωσμένη δημοσίευση από vittasko » Τρί Ιούλ 10, 2018 11:40 pm

Εάν δύο τρίγωνα είναι συμμετρικά μεταξύ τους, ως προς δοσμένη ευθεία, τότε είναι και ορθολογικά.

Κώστας Βήττας.

ΥΓ. Εάν \vartriangle ABC,\ \vartriangle A'B'C' είναι τα δοσμένα τρίγωνα, συμμετρικά ως προς την ευθεία (\varepsilon) , αρκεί να αποδειχθεί ότι οι δια των σημείων A',\ B',\ C' κάθετες ευθείες επί των ευθειών BC,\ AC,\ AB αντιστοίχως, τέμνονται στο ίδιο σημείο.
Συνημμένα
f=181_t=62172.png
Εάν είναι συμμετρικά, είναι και ορθολογικά.
f=181_t=62172.png (14.32 KiB) Προβλήθηκε 288 φορές



Λέξεις Κλειδιά:
Άβαταρ μέλους
Διονύσιος Αδαμόπουλος
Δημοσιεύσεις: 720
Εγγραφή: Σάβ Μαρ 19, 2016 5:11 pm
Τοποθεσία: Πύργος Ηλείας

Re: Εάν είναι συμμετρικά, είναι και ορθολογικά.

#2

Μη αναγνωσμένη δημοσίευση από Διονύσιος Αδαμόπουλος » Τετ Ιούλ 11, 2018 1:11 am

Εάν είναι συμμετρικά είναι και ορθολογικά.png
Εάν είναι συμμετρικά είναι και ορθολογικά.png (33.45 KiB) Προβλήθηκε 204 φορές
Έστω ότι τα ίχνη των καθέτων από τα A', B', C' είναι K, M, L αντίστοιχα.

Έστω ότι οι A'K και C'L τέμνονται στο S.

Έχουμε πως το τετράπλευρο SLKB είναι εγγράψιμο, άρα \widehat{LSK}=\widehat{LBK}=\widehat{A'B'C'}, άρα \widehat{A'SC'}=\widehat{A'B'C'}, άρα το τετράπλευρο A'B'SC' είναι εγγράψιμο.

Άρα η A'K και η C'L τέμνονται πάνω στον περιγεγραμμένο κύκλο του A'B'C'.

Όμοια και η A'K και η B'M τέμνονται στον περιγεγραμμένο κύκλο του A'B'C'. Όμως η A'K τέμνει τον περιγεγραμμένο μόνο σε ένα σημείο (εκτός του A' :), το οποίο δεν έχεις τς προϋποθέσεις για να είναι ένα από τα προηγούμενα σήμεία ).

Άρα αυτά τα δύο σημεία ταυτίζονται, δηλαδή η A'K, B'M και C'L συντρέχουν.

Edit: Προστέθηκε το σχήμα και έγιναν κάποιες βελτιώσεις!
τελευταία επεξεργασία από Διονύσιος Αδαμόπουλος σε Τετ Ιούλ 11, 2018 12:11 pm, έχει επεξεργασθεί 2 φορές συνολικά.


Houston, we have a problem!
min##
Δημοσιεύσεις: 104
Εγγραφή: Τρί Απρ 18, 2017 3:40 pm

Re: Εάν είναι συμμετρικά, είναι και ορθολογικά.

#3

Μη αναγνωσμένη δημοσίευση από min## » Τετ Ιούλ 11, 2018 1:13 am

Έστω S η τομή των καθέτων των C', B' στις AB, AC. Αρκεί να δειχτεί ότι SA' είναι κάθετη στην BC. Με D, E τις τομές των SB', SC' με τις CA, BA και K, L τις προβολές του A' στις AB, AC αρκεί από το θεώρημα του κ. Κούτρα να είναι \frac{KE}{CA}=\frac{LD}{BA} , ή \frac{KE}{C'A'}=\frac{LD}{B'A'} , το οποίο είναι άμεσο λόγω των ομοίων τριγώνων που δημιουργούνται στις C'A', B'A' ( λόγω του ότι οι BA, C'A' και CA, B'A' έχουν ίδια σχετική κλίση).


ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ
Δημοσιεύσεις: 1902
Εγγραφή: Πέμ Φεβ 27, 2014 9:05 am
Τοποθεσία: ΧΑΛΚΙΔΑ- ΑΘΗΝΑ-ΚΡΗΤΗ

Re: Εάν είναι συμμετρικά, είναι και ορθολογικά.

#4

Μη αναγνωσμένη δημοσίευση από ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ » Τετ Ιούλ 11, 2018 2:47 pm

vittasko έγραψε:
Τρί Ιούλ 10, 2018 11:40 pm
Εάν δύο τρίγωνα είναι συμμετρικά μεταξύ τους, ως προς δοσμένη ευθεία, τότε είναι και ορθολογικά.

Κώστας Βήττας.

ΥΓ. Εάν \vartriangle ABC,\ \vartriangle A'B'C' είναι τα δοσμένα τρίγωνα, συμμετρικά ως προς την ευθεία (\varepsilon) , αρκεί να αποδειχθεί ότι οι δια των σημείων A',\ B',\ C' κάθετες ευθείες επί των ευθειών BC,\ AC,\ AB αντιστοίχως, τέμνονται στο ίδιο σημείο.
Γεια σου Κώστα.
Νομίζω ότι δεν χρειάζεται τα τρίγωνα να είναι συμμετρικά ως προς ευθεία.
Αρκεί να είναι αντιρρόπως ίσα.
Η απόδειξη παραμένει ίδια .


vittasko
Επιμελητής
Δημοσιεύσεις: 1981
Εγγραφή: Πέμ Ιαν 08, 2009 8:46 am
Τοποθεσία: Μαρούσι - Αθήνα.

Re: Εάν είναι συμμετρικά, είναι και ορθολογικά.

#5

Μη αναγνωσμένη δημοσίευση από vittasko » Τετ Ιούλ 11, 2018 5:46 pm

Σταύρο,σ' ευχαριστώ. Εύστοχη παρατήρηση. Δεν το είδα (*) και ούτε η ισότητα είναι απαραίτητη. Αρκεί τα τρίγωνα να είναι όμοια και αντίρροπα.

Άρα, ο σωστός τίτλος είναι: Εάν είναι όμοια και αντίρροπα, είναι και ορθολογικά.

Κώστας Βήττας.

(*) Πολλά μου ξεφεύγουν τελευταία ... :(


Απάντηση

Επιστροφή σε “Γεωμετρία - Επίπεδο Αρχιμήδη (Seniors)”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης