Ένας (φαινομενικά τουλάχιστον) άλλος τρόπος λύσης με χρήση τριγωνομετρίας.
Γίνεται αναφορά στο προηγούμενο σχήμα της # 2, με τη σημείωση ότι γων ΒΟΤ=γων ΟΤΤ΄=θ
Εμβαδόν τραπεζίου (T΄S΄SP) =Ε(θ) = (OSS΄) – (OPT΄) (διαφορά εμβαδών δύο τριγώνων).
(OSS΄) = 0.5R(Rcosθ)sinθ, δηλαδή


(OPT΄) = 0.5(OT΄)(OP)sinθ = 0.5(Rsinθ)(Rsinθ/cosθ)sinθ =

(ορθογώνια τρίγωνα ΟΤΤ΄ και OPT΄).

=

Η πρώτη παράγωγος της Ε(θ) είναι είναι

, που μηδενίζεται για

, με δεκτή τιμή (θ στο πρώτο τεταρτημόριο)

. (θ = περίπου 25.91 μοίρες).
Η δεύτερη παράγωγος

είναι αρνητική για κάθε θ (στο πρώτο τεταρτημόριο).
Άρα για την ευρεθείσα τιμή

το Ε(θ) έχει μέγιστο, που είναι

. Τούτο είναι ίδιο με της # 2 (george visvikis).