Θέμα στον κύκλο

Συντονιστές: Demetres, socrates, silouan

gschwindi
Δημοσιεύσεις: 16
Εγγραφή: Δευ Μαρ 11, 2019 6:23 pm

Θέμα στον κύκλο

#1

Μη αναγνωσμένη δημοσίευση από gschwindi » Κυρ Φεβ 16, 2020 6:11 pm

Καλησπέρα.

Δεν γνωρίζω αν οι μαθητές έχουν δεί αυτό το πρόβλημα γιατί είναι δικιάς μου κατασκευής. Είναι πιθανό και ο φάκελος να μην είναι ο κατάλληλος (με κριτήριο τo επίπεδο δυσκολίας).

Μέσα στον κύκλο παίρνουμε ευθύγραμμα τμήματα έτσι ώστε τα άκρα τους να είναι σημεία του κύκλου και επίσης καμία δυάδα ευθύγραμμων τμημάτων να έχει κοινο άκρο. Επιπροσθέτως, καμία τριάδα απο ευθύγραμμα τμήματα παιρνάει απο το ίδιο σημείο. Από αυτά τα ευθύγραμμα τμήματα ορίζονται περιοχές μεσα στον κύκλο των οποίων τα σύνορα είναι είτε τόξα ή ευθύγραμμα τμήματα. Σε κάθε μία απο αυτές τις περιοχές αντιστοιχίζουμε τον αριθμό B των συνόρων της που είναι ευθύγραμμα τμήματα. Έστω S το σύνολο που περιέχει τους αριθμούς B για κάθε περιοχή.

Να αποδειχθεί ότι μπορούμε να διαλέξουμε ένα υποσύνολο H του S έτσι ώστε τα στοιχεία στα H, S/H να έχουν το ίδιο άθροισμα.

Συνημμένο είναι ένα παραδειγματικό σχήμα.
Συνημμένα
combinatorics.PNG
combinatorics.PNG (34.81 KiB) Προβλήθηκε 222 φορές



Λέξεις Κλειδιά:
Mihalis_Lambrou
Επιμελητής
Δημοσιεύσεις: 12232
Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am

Re: Θέμα στον κύκλο

#2

Μη αναγνωσμένη δημοσίευση από Mihalis_Lambrou » Κυρ Φεβ 16, 2020 7:24 pm

gschwindi έγραψε:
Κυρ Φεβ 16, 2020 6:11 pm
Καλησπέρα.

Δεν γνωρίζω αν οι μαθητές έχουν δεί αυτό το πρόβλημα γιατί είναι δικιάς μου κατασκευής. Είναι πιθανό και ο φάκελος να μην είναι ο κατάλληλος (με κριτήριο τo επίπεδο δυσκολίας).

Μέσα στον κύκλο παίρνουμε ευθύγραμμα τμήματα έτσι ώστε τα άκρα τους να είναι σημεία του κύκλου και επίσης καμία δυάδα ευθύγραμμων τμημάτων να έχει κοινο άκρο. Επιπροσθέτως, καμία τριάδα απο ευθύγραμμα τμήματα παιρνάει απο το ίδιο σημείο. Από αυτά τα ευθύγραμμα τμήματα ορίζονται περιοχές μεσα στον κύκλο των οποίων τα σύνορα είναι είτε τόξα ή ευθύγραμμα τμήματα. Σε κάθε μία απο αυτές τις περιοχές αντιστοιχίζουμε τον αριθμό B των συνόρων της που είναι ευθύγραμμα τμήματα. Έστω S το σύνολο που περιέχει τους αριθμούς B για κάθε περιοχή.

Να αποδειχθεί ότι μπορούμε να διαλέξουμε ένα υποσύνολο H του S έτσι ώστε τα στοιχεία στα H, S/H να έχουν το ίδιο άθροισμα.

Συνημμένο είναι ένα παραδειγματικό σχήμα.
Είναι απλό: Βάφουμε εναλλάξ τις περιοχές μαύρο-άσπρο, σαν σε σκακιέρα. Αυτό είναι εφικτό διότι, επαγωγικά, αν το καταφέρουμε για n γραμμές τότε για μία ακόμη γραμμή απλά αλλάζουμε το χρώμα όλων των περιοχών από την μία της πλευρά.

Τώρα, το ένα σύνολο είναι οι μαύρες περιοχές, του οποίου το συμπλήρωμα είναι βέβαια οι άσπρες. Επειδή κάθε ευθύγραμμο τμήμα μετέχει ως σύνορο και στο ένα σύνολο και στο άλλο, άπαξ, το ζητούμενο είναι άμεσο.


Άβαταρ μέλους
min##
Δημοσιεύσεις: 310
Εγγραφή: Τρί Απρ 18, 2017 3:40 pm

Re: Θέμα στον κύκλο

#3

Μη αναγνωσμένη δημοσίευση από min## » Κυρ Φεβ 16, 2020 7:25 pm

Edit:Τελικά βγαίνει με Γραφήματα:Αν βάλουμε κορφές στα εσωτερικά των χωρίων και τις ενώνουμε ανν οι περιοχές συνορεύουν το Γράφημα που προκύπτει είναι διμερές οπότε μπορούμε να πάρουμε για υποσύνολα τις 2 κλάσεις κλπ..
τελευταία επεξεργασία από min## σε Κυρ Φεβ 16, 2020 8:12 pm, έχει επεξεργασθεί 3 φορές συνολικά.


gschwindi
Δημοσιεύσεις: 16
Εγγραφή: Δευ Μαρ 11, 2019 6:23 pm

Re: Θέμα στον κύκλο

#4

Μη αναγνωσμένη δημοσίευση από gschwindi » Κυρ Φεβ 16, 2020 7:30 pm

Ακριβώς την ίδια λύση με τον κ. Λάμπρου.


Απάντηση

Επιστροφή σε “Συνδυαστική - Προχωρημένο Επίπεδο (Juniors)”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης