Αριθμοί με τρεις διαιρέτες
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Αριθμοί με τρεις διαιρέτες
Ένας φυσικός αριθμός έχει την ιδιότητα να έχει (ακριβώς) τρεις διαρέτες και, επίσης, ο έχει (ακριβώς) τρεις διαιρέτες. Ποιος είναι ο ;
Édit. Έκανα τυπογραφική διόρθωση. Αντί , το σωστό είναι . Συγγνώμη για την ταλαιπωρία.
Édit. Έκανα τυπογραφική διόρθωση. Αντί , το σωστό είναι . Συγγνώμη για την ταλαιπωρία.
τελευταία επεξεργασία από Mihalis_Lambrou σε Τετ Οκτ 02, 2024 9:52 pm, έχει επεξεργασθεί 1 φορά συνολικά.
Λέξεις Κλειδιά:
-
- Δημοσιεύσεις: 86
- Εγγραφή: Δευ Νοέμ 06, 2023 6:01 pm
- Τοποθεσία: Ρόδος
- Επικοινωνία:
Re: Αριθμοί με τρεις διαιρέτες
τελευταία επεξεργασία από Nikitas K. σε Πέμ Οκτ 03, 2024 7:47 pm, έχει επεξεργασθεί 1 φορά συνολικά.
Νικήτας Κακούλλης
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Έκανα τυπογραφική διόρθωση στην εκφώνηση. Αντί N+2, το σωστό είναι N+72. Συγγνώμη για την ταλαιπωρία.
Re: Αριθμοί με τρεις διαιρέτες
Αν είναι δεδομένο ότι ο αριθμός είναι μοναδικός , τότε είναι ο .
( Τετράγωνα πρώτων και ο και ο ) .
( Τετράγωνα πρώτων και ο και ο ) .
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Θανάση, δεν είναι μοναδικός ο αριθμός. Αλλά έτσι και αλλιώς θέλουμε τον συλλογισμό για εύρεση του αριθμού. Στην πραγματικότητα πρέπει να αιτιολογηθεί και η αιτία που ψάχνουμε τετράγωνα πρώτων. Είναι ουσιαστικό μέρος της άσκησης.
-
- Δημοσιεύσεις: 86
- Εγγραφή: Δευ Νοέμ 06, 2023 6:01 pm
- Τοποθεσία: Ρόδος
- Επικοινωνία:
Re: Αριθμοί με τρεις διαιρέτες
Προσωπικά καμία ταλαιπωρία, μου δώθηκε η ευκαρία να ξαναγράψω πιο ανθρωπινά (ελπίζω) την απόδειξη στο hide...Mihalis_Lambrou έγραψε: ↑Τετ Οκτ 02, 2024 9:53 pmΈκανα τυπογραφική διόρθωση στην εκφώνηση. Αντί N+2, το σωστό είναι N+72. Συγγνώμη για την ταλαιπωρία.
Όπως παραπάνω με την ίδια λογική έχουμε
διότι αυτοί είναι όλοι οι διαιρέτες του
Απευθείας προκύπτει ότι τα άλλα απορρίπτονται λόγω ότι στην πρόσθεση κατά μέλη το πρώτο μέλος είναι άρτιος ενώ το δεύτερο περιττός.
Το απορρίπτεται επειδή δεν είναι πρώτος.
Οπότε τα οποία τα δεχόμαστε αφού το είναι πρώτος σε κάθε περίπτωση.
Άρα έχουμε ότι
Νικήτας Κακούλλης
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Επειδή οι μαθητές Γυμνασίου μπορεί να μην ξέρουν γιατί οι αριθμοί με ακριβώς τρεις διαιρέτες είναι της μορφής με πρώτο, και αντίστροφα, ας το καταγράψω εδώ.Mihalis_Lambrou έγραψε: ↑Τετ Οκτ 02, 2024 10:15 pmΣτην πραγματικότητα πρέπει να αιτιολογηθεί και η αιτία που ψάχνουμε τετράγωνα πρώτων. Είναι ουσιαστικό μέρος της άσκησης.
Αν η ανάλυση ενός αριθμού είχε δύο ή περισσότερους διαφορετικούς πρώτους, ας πούμε τους , τότε θα είχε διαιρέτες τουλάχιστον τους, , δηλαδή τέσσερις και πάνω. Άρα αυτοί οι αριθμοί δεν μας ενδιαφέρουν, και μένουμε στους αριθμούς με μόνο έναν πρώτο στην ανάλυσή τους, δηλαδή σε αριθμούς της μορφής . Αν , τότε ο αριθμός θα είχε διαιρέτες τουλάχιστον τους , οπότε πάλι περισσότερους από . Έτσι μένουν οι και . Το πρώτο εύκολα απορρίπτεται, οπότε μένει το δεύτερο. Συμπεραίνουμε ότι ο αριθμός θα είναι της μορφής , που εύκολα διαπιστώνουμε ότι έχει ακριβώς τρεις διαιρέτες.
Re: Αριθμοί με τρεις διαιρέτες
Ίσως είναι κατάλληλη στιγμή να δώσουμε έναν τύπο για το πλήθος των διαιρετών του που η ανάλυση του σε γινόμενο πρώτων παραγόντων είναι
Εφαρμογή για το
Εφαρμογή για το
-
- Δημοσιεύσεις: 86
- Εγγραφή: Δευ Νοέμ 06, 2023 6:01 pm
- Τοποθεσία: Ρόδος
- Επικοινωνία:
Re: Αριθμοί με τρεις διαιρέτες
Άρα το πλήθος των διαιρετών του είναι το γινόμενο των πληθικών αριθμών των παραπάνω συνόλων, δηλαδή
Βέβαια χρησιμοποίησα καταχρηστικά τα αποσιωπητικά, καθώς απευθυνόμαστε σε πεπερασμένο αριθμό.
Αν χρειαστεί εύκολα κάνουμε «τέλειες» επαγωγές στο πλήθος των πρώτων παρογόντων, αλλά και επάνω στον τύπο (για ασφάλεια) ή αξιοποιούμε αυτήν την παραπομπή «ΠΛΗΘΟΣ ΔΙΑΙΡΕΤΩΝ ΣΥΝΘΕΤΟΥ ΑΡΙΘΜΟΥ
»
Νικήτας Κακούλλης
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Με την ευκαιρία, ας δούμε μία άσκηση κατάλληλη για Γυμνάσιο που αξιοποιεί το παραπάνω:
Ποιος αριθμός
- έχει διαιρέτες,
- είναι πολλαπλάσιο του και
- είναι ο μικρότερος δυνατός φυσικός αριθμός με τις δύο προηγούμενες ιδιότητες.
-
- Δημοσιεύσεις: 86
- Εγγραφή: Δευ Νοέμ 06, 2023 6:01 pm
- Τοποθεσία: Ρόδος
- Επικοινωνία:
Re: Αριθμοί με τρεις διαιρέτες
Ο ζητούμενος αριθμός είναι τοMihalis_Lambrou έγραψε: ↑Παρ Οκτ 04, 2024 9:31 pmΠοιος αριθμός
- έχει διαιρέτες,
- είναι πολλαπλάσιο του και
- είναι ο μικρότερος δυνατός φυσικός αριθμός με τις δύο προηγούμενες ιδιότητες.
Ο αριθμός που ψάχνουμε είναι σύνθετος αφού έχει διαιρέτες άρα γράφεται ως γινόμενο πρώτων παραγόντων.
Άρα το καλύτερο που μπορούμε να κάνουμε είναι να χρησιμοποιήσουμε μόνο δύο πρώτους το επειδή είναι ο μικρότερος πρώτος αριθμός και το λόγω ότι πρέπει να διαιρείται με το και επειδή τυγχάνει να μην μπορεί να αναλυθεί περαιτέρω σε γινόμενο πρώτων παραγόντων καθώς είναι πρώτος.
Θα χρησιμοποιήσουμε μόνο μια το και φορές το επομένως
Νικήτας Κακούλλης
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Για ξαναδές την λύση σου γιατί η απάντηση είναι λάθος. Για να σε διευκολύνω, σημειώνω το σημείο που είναι εσφαλμένος ο συλλογισμός σου. Προσπάθησε να καταλάβεις γιατί είναι εσφαλμένος.Nikitas K. έγραψε: ↑Σάβ Οκτ 05, 2024 6:05 pmΆρα το καλύτερο που μπορούμε να κάνουμε είναι να χρησιμοποιήσουμε μόνο δύο πρώτους
-
- Δημοσιεύσεις: 86
- Εγγραφή: Δευ Νοέμ 06, 2023 6:01 pm
- Τοποθεσία: Ρόδος
- Επικοινωνία:
Re: Αριθμοί με τρεις διαιρέτες
Mihalis_Lambrou έγραψε: ↑Σάβ Οκτ 05, 2024 7:07 pmΓια ξαναδές την λύση σου γιατί η απάντηση είναι λάθος. Για να σε διευκολύνω, σημειώνω το σημείο που είναι εσφαλμένος ο συλλογισμός σου. Προσπάθησε να καταλάβεις γιατί είναι εσφαλμένος.
Είναι εσφαλμένος διότι ένας σύνθετος αριθμός μπορεί να αναπαρασταθεί ως δύναμη ενός πρώτου αριθμού.
Π.χ.
Στην προκειμένη αν χρησιμοποιήσω μόνο έναν πρώτο αριθμό τότε θα πάρω που είναι μεγαλύτερος από τον που βρέθηκε.
Νικήτας Κακούλλης
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
Re: Αριθμοί με τρεις διαιρέτες
Εμένα μου φαίνεται σωστό.Nikitas K. έγραψε: ↑Σάβ Οκτ 05, 2024 6:05 pmΟ ζητούμενος αριθμός είναι τοMihalis_Lambrou έγραψε: ↑Παρ Οκτ 04, 2024 9:31 pmΠοιος αριθμός
- έχει διαιρέτες,
- είναι πολλαπλάσιο του και
- είναι ο μικρότερος δυνατός φυσικός αριθμός με τις δύο προηγούμενες ιδιότητες.
Ο αριθμός που ψάχνουμε είναι σύνθετος αφού έχει διαιρέτες άρα γράφεται ως γινόμενο πρώτων παραγόντων.
Άρα το καλύτερο που μπορούμε να κάνουμε είναι να χρησιμοποιήσουμε μόνο δύο πρώτους το επειδή είναι ο μικρότερος πρώτος αριθμός και το λόγω ότι πρέπει να διαιρείται με το και επειδή τυγχάνει να μην μπορεί να αναλυθεί περαιτέρω σε γινόμενο πρώτων παραγόντων καθώς είναι πρώτος.
Θα χρησιμοποιήσουμε μόνο μια το και φορές το επομένως
Κωνσταντίνος Σμπώκος
-
- Δημοσιεύσεις: 86
- Εγγραφή: Δευ Νοέμ 06, 2023 6:01 pm
- Τοποθεσία: Ρόδος
- Επικοινωνία:
Re: Αριθμοί με τρεις διαιρέτες
Nikitas K. έγραψε: ↑Σάβ Οκτ 05, 2024 7:21 pmMihalis_Lambrou έγραψε: ↑Σάβ Οκτ 05, 2024 7:07 pmΓια ξαναδές την λύση σου γιατί η απάντηση είναι λάθος. Για να σε διευκολύνω, σημειώνω το σημείο που είναι εσφαλμένος ο συλλογισμός σου. Προσπάθησε να καταλάβεις γιατί είναι εσφαλμένος.
Είναι εσφαλμένος διότι ένας σύνθετος αριθμός μπορεί να αναπαρασταθεί ως δύναμη ενός πρώτου αριθμού.
Π.χ.
Στην προκειμένη αν χρησιμοποιήσω μόνο έναν πρώτο αριθμό τότε θα πάρω που είναι μεγαλύτερος από τον που βρέθηκε.
Επιπλέον με τον αριθμό που βρήκα ίσως πρέπει να απορρίψω και που εν τέλει απορρίπτονται γιατί είναι μεγαλύτεροι του ή επειδή δεν διαιρούνται με το
Νικήτας Κακούλλης
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Ακόμα δεν έχεις αντιληφθεί που είναι το σφάλμα στον συλλογισμό. Για ξαναδές το νηφάλια.Nikitas K. έγραψε: ↑Σάβ Οκτ 05, 2024 7:32 pmΕπιπλέον με τον αριθμό που βρήκα ίσως πρέπει να απορρίψω και που εν τέλει απορρίπτονται γιατί είναι μεγαλύτεροι του ή επειδή δεν διαιρούνται με το
Επίσης, Κωνσταντίνε (stranger) σου έστειλα ένα Π.Μ. με την σωστή απάντηση.
Θεωρώ την άσκηση ανοικτή σε όλους.
Re: Αριθμοί με τρεις διαιρέτες
Ναι το είδα. Έχεις απόλυτο δίκιο. Ήταν λίγο tricky που λέμε.Mihalis_Lambrou έγραψε: ↑Σάβ Οκτ 05, 2024 7:46 pmΑκόμα δεν έχεις αντιληφθεί που είναι το σφάλμα στον συλλογισμό. Για ξαναδές το νηφάλια.Nikitas K. έγραψε: ↑Σάβ Οκτ 05, 2024 7:32 pmΕπιπλέον με τον αριθμό που βρήκα ίσως πρέπει να απορρίψω και που εν τέλει απορρίπτονται γιατί είναι μεγαλύτεροι του ή επειδή δεν διαιρούνται με το
Επίσης, Κωνσταντίνε (stranger) σου έστειλα ένα Π.Μ. με την σωστή απάντηση.
Θεωρώ την άσκηση ανοικτή σε όλους.
Κωνσταντίνος Σμπώκος
-
- Δημοσιεύσεις: 86
- Εγγραφή: Δευ Νοέμ 06, 2023 6:01 pm
- Τοποθεσία: Ρόδος
- Επικοινωνία:
Re: Αριθμοί με τρεις διαιρέτες
Έστω οι θετικές δυνάμεις των πρώτων της ανάλυσης του ζητούμενου αριθμού σε γινόμενο πρώτων παραγόντων.
Το άρα
λόγω ότι είναι θετικές.
Αν άτοπο.
Άρα
Αν απορρίπτονται.
Αν απορρίπτονται.
Αν έχουμε
Έστω πρώτοι αριθμοί και ακέραιος τέτοιοι ώστε που είναι ο αριθμός που ψάχνουμε.
Διαλέγω το και έχουμε τον αριθμό
Το άρα
λόγω ότι είναι θετικές.
Αν άτοπο.
Άρα
Αν απορρίπτονται.
Αν απορρίπτονται.
Αν έχουμε
Έστω πρώτοι αριθμοί και ακέραιος τέτοιοι ώστε που είναι ο αριθμός που ψάχνουμε.
Διαλέγω το και έχουμε τον αριθμό
Νικήτας Κακούλλης
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
«Μέτρον ἄριστον» Κλεόβουλος Εὐαγόρου Λίνδιος
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Τώρα βρήκες την σωστή απάντηση αλλά α) γράφεις πολλά περιττά στοιχεία και β) παραλλείπεις ουσιαστικά στοιχεία. Αν αυτή ήταν άσκηση σε διαγώνισμα Θεωρίας Αριθμών στο Πανεπιστήμιο, θα δυσκολευόμουνα να την βαθμολογίσω με πάνω από τις μισές μονάδες της. Κυρίως γιατί η άσκηση είναι πολύ απλή, οπότε πρέπει να φανούν καθαρά οι ιδέες της.
Λύση: Αφού , οι υποψήφιοι αριθμοί είναι, αντίστοιχα, της μορφής ή ή , όπου ο ένας από τους πρώτους είναι ο .
Αφού θέλουμε τον μικρότερο αριθμό με τις εν λόγω ιδιότητες, πρέπει να επιλέξουμε τους πρώτους να είναι τόσο πιο μικροί όσο πιο μεγάλος είναι ο εκθέτης τους. Εδώ οι παραπάνω γίνονται
ή ή . Άρα ο ζητούμενος είναι ο τελευταίος.
-
- Επιμελητής
- Δημοσιεύσεις: 16160
- Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am
Re: Αριθμοί με τρεις διαιρέτες
Ας δούμε άλλη μία άσκηση κατάλληλη για Γυμνάσιο, πέρα από αυτήν στο ποστ #, που αξιοποιεί το παραπάνω.
Για έναν φυσικό αριθμό είναι γνωστό ότι ο έχει διαιρέτες. Πόσους διαιρέτες μπορεί να έχει ο ;
Μέλη σε σύνδεση
Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 2 επισκέπτες