ΓΕΩΜΕΤΡIΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

Συντονιστές: cretanman, Demetres, polysot, socrates, silouan, rek2

ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#21

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Παρ Ιαν 15, 2010 9:07 pm

Αγαπητοί φίλοι,
σας δίνουμε αμέσως με το συνημμένο 14 μία ακόμη απόδειξη της Πρότασης 2 (Νέα Πρόταση Ορθογώνιων Τριγώνων), την οποία καταχωρήσαμε στην παράγραφο 10ι(114) του βιβλίου μας «Νέα Στοιχεία Γεωμετρίας» (τόμος 10) .


Φιλικά
Νίκος Κυριαζής.
Συνημμένα
Συνημμένο 14..doc
(23 KiB) Μεταφορτώθηκε 169 φορές



Λέξεις Κλειδιά:
ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#22

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Παρ Ιαν 22, 2010 3:37 pm

Πρόταση 6.(Νέα Πρόταση Ορθογωνίων τριγώνων).

7ι(136). «Σε κάθε ορθογώνιο τρίγωνο ΑΒΓ (γων.Α=1 ορθή), αν η διχοτόμος της γωνίας του Β τέμνει την πλευρά του ΑΓ στο Ε και το ύψος του ΑΔ στο Ζ, τότε θα είναι ΑΕ=ΑΖ, και αντίστροφα, αν η ΒΖΕ είναι ευθεία για την οποία ΑΕ=ΑΖ, τότε η ΒΖΕ είναι διχοτόμος της γωνίας Β».


[ Αγαπητοί φίλοι παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου. Η Πρόταση αυτή, έχει δημοσιευθεί στην παράγραφο 7ι(136)(τόμος 7), του βιβλίου μας «Νέα Στοιχεία Γεωμετρίας 2007», ενώ στην ίδια παράγραφο, έχουμε δώσει δύο αποδείξεις της. Δική μας ή δικές μας αποδείξεις θα δώσουμε αν χρειασθεί)].

Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#23

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Τετ Ιαν 27, 2010 8:44 pm

Πρόταση 7.( Γινόμενο Πλευρών Ορθικού Τριγώνου).

5θ(2). «Σε κάθε τρίγωνο ΑΒΓ, του οποίου Η είναι το ορθόκεντρο και ΑΔ, ΒΕ, ΓΖ είναι τα ύψη του, τα δεκαπέντε παρακάτω τριπλά γινόμενα τμημάτων, είναι ίσα: ΔΕ.ΕΖ.ΖΔ=ΑΖ.ΒΔ.ΓΕ=ΖΒ.ΔΓ.ΕΑ= ΑΔ.ΔΗ.ΕΖ=ΒΕ.ΕΗ.ΖΔ=ΓΖ.ΖΗ.ΔΕ=
ΕΖ.ΒΔ.ΔΓ=ΖΔ.ΓΕ.ΕΑ=ΔΕ.ΑΖ.ΖΒ=
ΑΔ.ΒΖ.ΗΕ=ΒΕ.ΓΔ.ΗΖ=ΓΖ.ΑΕ.ΗΔ=
ΑΔ.ΓΕ.ΗΖ=ΒΕ.ΑΖ.ΗΔ=ΓΖ.ΒΔ.ΗΕ».


[ Αγαπητοί φίλοι παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου. Η Πρόταση αυτή, έχει δημοσιευθεί στις παραγράφους 5θ(2) και 5θ(183) (τόμος 5), του βιβλίου μας «Νέα Στοιχεία Γεωμετρίας 2007», ενώ στις ίδιες παραγράφους, έχουμε δώσει δύο αποδείξεις της. Δική μας ή δικές μας αποδείξεις θα δώσουμε αν χρειασθεί].

Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#24

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Παρ Ιαν 29, 2010 7:43 pm

ΝΙΚΟΣ έγραψε:Πρόταση 7.( Γινόμενο Πλευρών Ορθικού Τριγώνου).

5θ(2). «Σε κάθε τρίγωνο ΑΒΓ, του οποίου Η είναι το ορθόκεντρο και ΑΔ, ΒΕ, ΓΖ είναι τα ύψη του, τα δεκαπέντε παρακάτω τριπλά γινόμενα τμημάτων, είναι ίσα: ΔΕ.ΕΖ.ΖΔ=ΑΖ.ΒΔ.ΓΕ=ΖΒ.ΔΓ.ΕΑ= ΑΔ.ΔΗ.ΕΖ=ΒΕ.ΕΗ.ΖΔ=ΓΖ.ΖΗ.ΔΕ=
ΕΖ.ΒΔ.ΔΓ=ΖΔ.ΓΕ.ΕΑ=ΔΕ.ΑΖ.ΖΒ=
ΑΔ.ΒΖ.ΗΕ=ΒΕ.ΓΔ.ΗΖ=ΓΖ.ΑΕ.ΗΔ=
ΑΔ.ΓΕ.ΗΖ=ΒΕ.ΑΖ.ΗΔ=ΓΖ.ΒΔ.ΗΕ».


[ Αγαπητοί φίλοι παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου. Η Πρόταση αυτή, έχει δημοσιευθεί στις παραγράφους 5θ(2) και 5θ(183) (τόμος 5), του βιβλίου μας «Νέα Στοιχεία Γεωμετρίας 2007», ενώ στις ίδιες παραγράφους, έχουμε δώσει δύο αποδείξεις της. Δική μας ή δικές μας αποδείξεις θα δώσουμε αν χρειασθεί].

Φιλικά
Νίκος Κυριαζής.
Αγαπητοί φίλοι,
θα ήθελα να υπενθυμίσω την παραπάνω Πρόταση 5, με εφαρμογή της οποίας είναι δυνατό να επιτύχουμε μία ωραία και σχετικά εύκολη απόδειξη της Πρότασης 7.



Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#25

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Δευ Φεβ 08, 2010 9:54 am

ΝΙΚΟΣ έγραψε:Πρόταση 6.(Νέα Πρόταση Ορθογωνίων τριγώνων).

7ι(136). «Σε κάθε ορθογώνιο τρίγωνο ΑΒΓ (γων.Α=1 ορθή), αν η διχοτόμος της γωνίας του Β τέμνει την πλευρά του ΑΓ στο Ε και το ύψος του ΑΔ στο Ζ, τότε θα είναι ΑΕ=ΑΖ, και αντίστροφα, αν η ΒΖΕ είναι ευθεία για την οποία ΑΕ=ΑΖ, τότε η ΒΖΕ είναι διχοτόμος της γωνίας Β».




Φιλικά
Νίκος Κυριαζής.
Αγαπητοί φίλοι,
επειδή για την παραπάνω Πρόταση 6 παρατηρείται στασιμότητα, αν και έχει περάσει ικανός χρόνος, θα έλεγα ότι σε μία απόδειξή της φθάνουμε, αν δούμε ότι οι διχοτόμοι των γωνιών Β και ΓΑΔ, είναι κάθετες.


Φιλικά.
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#26

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Κυρ Μαρ 21, 2010 4:30 pm

ΝΙΚΟΣ έγραψε:
ΝΙΚΟΣ έγραψε:Πρόταση 6.(Νέα Πρόταση Ορθογωνίων τριγώνων).

7ι(136). «Σε κάθε ορθογώνιο τρίγωνο ΑΒΓ (γων.Α=1 ορθή), αν η διχοτόμος της γωνίας του Β τέμνει την πλευρά του ΑΓ στο Ε και το ύψος του ΑΔ στο Ζ, τότε θα είναι ΑΕ=ΑΖ, και αντίστροφα, αν η ΒΖΕ είναι ευθεία για την οποία ΑΕ=ΑΖ, τότε η ΒΖΕ είναι διχοτόμος της γωνίας Β».




Φιλικά
Νίκος Κυριαζής.
Αγαπητοί φίλοι,
επειδή για την παραπάνω Πρόταση 6 παρατηρείται στασιμότητα, αν και έχει περάσει ικανός χρόνος, θα έλεγα ότι σε μία απόδειξή της φθάνουμε, αν δούμε ότι οι διχοτόμοι των γωνιών Β και ΓΑΔ, είναι κάθετες.


Φιλικά.
Νίκος Κυριαζής.
Αγαπητοί φίλοι,
για τη συνέχεια της Πρότασης 6 ή 7ι(136), βλέπε στη διεύθυνση viewtopic.php?f=22&t=5521.


Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#27

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Κυρ Μαρ 21, 2010 5:25 pm

ΝΙΚΟΣ έγραψε:Νέες Προτεινόμενες Προτάσεις Γεωμετρίας.
Αγαπητοί φίλοι της Γεωμετρίας, φίλοι μου.
Σ’ αυτό εδώ τον χώρο, θα σας παρουσιάζουμε στο εξής, σημαντικές κατά την γνώμη μας Προτάσεις Γεωμετρίας, συνήθως με τις αποδείξεις τους, τις οποίες έχουμε επινοήσει κατά το παρελθόν και τις οποίες δεν έχουμε συναντήσει μέχρι τώρα στη γνωστή μας βιβλιογραφία (πρωτοεμφανιζόμενες). Γι’ αυτές τις νέες Προτάσεις θα θέλαμε να μας γνωρίζετε αν τις έχετε συναντήσει, που και πότε, να κάνεται την σχετική καλοπροαίρετη κριτική σας, ενώ σας καλούμε να δημοσιεύσετε και τις δικές σας νέες σχετικές αποδείξεις.


Μετά τα παραπάνω, κάνουμε την αρχή με την παρακάτω, Πρόταση 1 (Πρόβλημα εγγραφής σε τρίγωνο Ισοδιαγώνιου Εξάγωνου).
7ι(187). «Σε τρίγωνο να εγγραφεί εξάγωνο του οποίου οι διαγώνιες (κύριες), να είναι ίσες (μεταξύ τους), να συντρέχουν και να είναι παράλληλες μία προς μία με τις αντίστοιχες πλευρές του δοσμένου τριγώνου».

Δηλαδή, «ζητείται να κατασκευασθεί μη κανονικό εξάγωνο ΑΒΓΔΕΖ τέτοιο ώστε οι μία παρά μία πλευρές του ΑΒ, ΓΔ, ΕΖ να βρίσκονται επάνω στις πλευρές ΚΛ, ΛΜ, ΜΚ αντίστοιχα, του δοσμένου τριγώνου ΚΛΜ και του οποίου οι διαγώνιες ΑΔ, ΒΕ, ΓΖ, να είναι ίσες, να συντρέχουν και να είναι: ΑΔ//ΚΜ, ΒΕ//ΛΜ, ΓΖ//ΚΛ».

Αγαπητοί φίλοι, για την παραπάνω κατασκευή, περιμένουμε τις απαντήσεις σας, πάντα μέσα στο παραπάνω αναφερόμενο πνεύμα.
Λύση ή λύσεις δικές μας θα δημοσιεύσουμε σύντομα.
[Την παραπάνω κατασκευή έχουμε επινοήσει το 2005 και την έχουμε συμπεριλάβει στο βιβλίο μας «Νέα Στοιχεία Γεωμετρίας», στην παράγραφο 7ι(180) (τόμος 7), ενώ έχουμε επιτύχει τις παρακάτω τρεις λύσεις:
Λύσεις 1 και 2 στις παραγράφους 7ι(180) και 7ι(187) σελίδες 342 και 357 αντίστοιχα, τόμος 7 (2007),
λύση 3 στην παράγραφο 10ι(74), τόμος 10 (2008) (δεν έχει δημοσιευθεί),του ίδιου βιβλίου μου].

Καλή αρχή.

Χρόνια Πολλά και καλή Πρωτοχρονιά.

Φιλικά
Νίκος Κυριαζής.

Αγαπητοί φίλοι,
μια παραλλαγή της Πρότασης 1[Κατασκευή 7ι(187)] , δίνουμε στη διεύθυνση viewtopic.php?f=50&t=5921.


Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#28

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Πέμ Οκτ 14, 2010 11:01 pm

Πρόταση 8.(Σύμπτωση δύο σημείων τετράπλευρου).
9ι(170). Θεωρούμε κυρτό τετράπλευρο ΑΒΓΔ και τα συμμετρικά Β', Γ' της τομής Κ των διαγωνίων του ΑΓ, ΒΔ, ως προς τα μέσα Μα, Μβ τούτων, αντίστοιχα.
Τριχοτομούμε τις πλευρές ΑΒ, ΒΓ, ΓΔ, ΔΑ του τετράπλευρου, με τα ζεύγη των σημείων A_{1}-A_{2},B_{1}-B_{2}, \Gamma _{1}- \Gamma _{2}, \Delta _{1}-\Delta _{2}, αντίστοιχα και ορίζουμε τις τομές: \Delta _{2}A_{1}\bigcap_{}{}A_{2}B_{_{1}}≡Ε, A_{2}B_{1}\bigcap{B_{2}\Gamma _{1}}≡Ζ, B_{2}\Gamma_{1}\bigcap{}\Gamma_{2}\Delta _{1}≡Η, \Gamma _{2}\Delta _{1}\bigcap{}\Delta_{2}A_{1}≡Θ.
Να δειχθεί ότι το βαρύκεντρο* του τριγώνου ΚΒ'Γ' και η τομή των διαγωνίων του τετράπλευρου ΕΖΗΘ, συμπίπτουν.

[ Αγαπητοί φίλοι παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου.
Η Πρόταση αυτή, έχει συμπεριληφθεί στην παράγραφο 9ι(170) (τόμος 9), του βιβλίου μας «Νέα Στοιχεία Γεωμετρίας 2008», με την απόδειξή της. Δική μας ή δικές μας αποδείξεις θα δώσουμε αν χρειασθεί].

Φιλικά
Νίκος Κυριαζής.

Σημείωση.
*Εδώ με τη λέξη βαρύκεντρο εννοούμε το κέντρο βάρους της επιφάνειας των σχημάτων, αν αυτή θεωρήσουμε ότι αποτελείται από ύλη που έχει κατανεμηθεί ομοιόμορφα σε όλη την επιφάνεια του σχήματος.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#29

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Σάβ Οκτ 16, 2010 10:02 am

ΝΙΚΟΣ έγραψε:Πρόταση 8.(Σύμπτωση δύο σημείων τετράπλευρου).
9ι(170). Θεωρούμε κυρτό τετράπλευρο ΑΒΓΔ και τα συμμετρικά Β', Γ' της τομής Κ των διαγωνίων του ΑΓ, ΒΔ, ως προς τα μέσα Μα, Μβ τούτων, αντίστοιχα.
Τριχοτομούμε τις πλευρές ΑΒ, ΒΓ, ΓΔ, ΔΑ του τετράπλευρου, με τα ζεύγη των σημείων A_{1}-A_{2},B_{1}-B_{2}, \Gamma _{1}- \Gamma _{2}, \Delta _{1}-\Delta _{2}, αντίστοιχα και ορίζουμε τις τομές: \Delta _{2}A_{1}\bigcap_{}{}A_{2}B_{_{1}}≡Ε, A_{2}B_{1}\bigcap{B_{2}\Gamma _{1}}≡Ζ, B_{2}\Gamma_{1}\bigcap{}\Gamma_{2}\Delta _{1}≡Η, \Gamma _{2}\Delta _{1}\bigcap{}\Delta_{2}A_{1}≡Θ.
Να δειχθεί ότι το βαρύκεντρο* του τριγώνου ΚΒ'Γ' και η τομή των διαγωνίων του τετράπλευρου ΕΖΗΘ, συμπίπτουν.

[ Αγαπητοί φίλοι παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου.
Η Πρόταση αυτή, έχει συμπεριληφθεί στην παράγραφο 9ι(170) (τόμος 9), του βιβλίου μας «Νέα Στοιχεία Γεωμετρίας 2008», με την απόδειξή της. Δική μας ή δικές μας αποδείξεις θα δώσουμε αν χρειασθεί].

Φιλικά
Νίκος Κυριαζής.

Σημείωση.
*Εδώ με τη λέξη βαρύκεντρο εννοούμε το κέντρο βάρους της επιφάνειας των σχημάτων, αν αυτή θεωρήσουμε ότι αποτελείται από ύλη που έχει κατανεμηθεί ομοιόμορφα σε όλη την επιφάνεια του σχήματος.

Αγαπητοί φίλοι,
επειδή μέχρι τώρα δεν έχει αναρτηθεί απόδειξη της Πρότασης 8, δίνουμε με το παρακάτω συνημμένο μας 56 μια δική μας απόδειξη.
Η απόδειξη αυτή βασίζεται στις Προτάσεις 9ι(168), 9ι(169), που έχουμε αναρτήσει [Εδώ], με τα συνημμένα μας 52, 53 αντίστοιχα.


Φιλικά
Νίκος Κυριαζής.
Συνημμένα
Συνημμένο 56..doc
(33.5 KiB) Μεταφορτώθηκε 146 φορές


Άβαταρ μέλους
rek2
Επιμελητής
Δημοσιεύσεις: 2239
Εγγραφή: Κυρ Δεκ 21, 2008 12:13 am

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#30

Μη αναγνωσμένη δημοσίευση από rek2 » Σάβ Οκτ 16, 2010 3:54 pm

ΝΙΚΟΣ έγραψε:Πρόταση 8.(Σύμπτωση δύο σημείων τετράπλευρου).
9ι(170). Θεωρούμε κυρτό τετράπλευρο ΑΒΓΔ και τα συμμετρικά Β', Γ' της τομής Κ των διαγωνίων του ΑΓ, ΒΔ, ως προς τα μέσα Μα, Μβ τούτων, αντίστοιχα.
Τριχοτομούμε τις πλευρές ΑΒ, ΒΓ, ΓΔ, ΔΑ του τετράπλευρου, με τα ζεύγη των σημείων A_{1}-A_{2},B_{1}-B_{2}, \Gamma _{1}- \Gamma _{2}, \Delta _{1}-\Delta _{2}, αντίστοιχα και ορίζουμε τις τομές: \Delta _{2}A_{1}\bigcap_{}{}A_{2}B_{_{1}}≡Ε, A_{2}B_{1}\bigcap{B_{2}\Gamma _{1}}≡Ζ, B_{2}\Gamma_{1}\bigcap{}\Gamma_{2}\Delta _{1}≡Η, \Gamma _{2}\Delta _{1}\bigcap{}\Delta_{2}A_{1}≡Θ.
Να δειχθεί ότι το βαρύκεντρο* του τριγώνου ΚΒ'Γ' και η τομή των διαγωνίων του τετράπλευρου ΕΖΗΘ, συμπίπτουν.
Ας γράψω μια διαφορετική λύση:

Έστω ότι οι ΕΘ, ΗΖ τέμνουν την ΑΓ στα σημεία Τ, Ρ αντίστοιχα, έστω, ακόμα, Χ το μέσο του ΤΡ και (χ) η εκ του Χ μεσοπαράλληλος των πλευρών ΕΘ και ΖΗ του παραλληλογράμμου ΕΖΗΘ.

Επί της ευθείας (χ) κείται το κ.β. του παραλληλογράμμου ΕΖΗΘ. Είναι εύκολο να δείξουμε ότι επί της ευθείας (χ) κείται και το κ.β. και του τριγώνου Κ´ô

Πραγματικά, αρκεί να δείξουμε ότι KX=\frac{1}{3}K\Gamma '

Με το συνημμένο σχήμα έχουμε:

A\Gamma =3AT+3P\Gamma \Rightarrow AM_a=\Gamma M_a=\frac{3AT+3P\Gamma }{2} (1)

TP=2AT+2P\Gamma \Rightarrow XT=XP=AT+P\Gamma \:  (2)

Και

XM_a=XP+P\Gamma -\Gamma M_a=(AT+P\Gamma )+R\Gamma -\frac{3AT+3R\Gamma }{2}=\frac{P\Gamma -AT}{2}

XK=XT+AT-AK=(AT+P\Gamma )+AT-3AT=P\Gamma -AT

έτσι KX=2XM_a, οπότε KX=\frac{1}{3}K\Gamma '

Ομοίως, τα εν λόγω κ. β. κείνται επί της μεσοπαραλλήλου (ψ) των ΕΖ και ΘΗ, και επειδή οι (χ) και (ψ) τέμνονται σε ένα, ακριβώς, σημείο - όπως και οι παράλληλες προς αυτές ευθείες τέμνονται σε ένα, ακριβώς, σημείο-, τα δύο κ.β συμπίπτουν.
Συνημμένα
NK.ggb
(12.29 KiB) Μεταφορτώθηκε 152 φορές


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#31

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Τρί Οκτ 19, 2010 8:52 am

rek2 έγραψε:
ΝΙΚΟΣ έγραψε:Πρόταση 8.(Σύμπτωση δύο σημείων τετράπλευρου).
9ι(170). Θεωρούμε κυρτό τετράπλευρο ΑΒΓΔ και τα συμμετρικά Β', Γ' της τομής Κ των διαγωνίων του ΑΓ, ΒΔ, ως προς τα μέσα Μα, Μβ τούτων, αντίστοιχα.
Τριχοτομούμε τις πλευρές ΑΒ, ΒΓ, ΓΔ, ΔΑ του τετράπλευρου, με τα ζεύγη των σημείων A_{1}-A_{2},B_{1}-B_{2}, \Gamma _{1}- \Gamma _{2}, \Delta _{1}-\Delta _{2}, αντίστοιχα και ορίζουμε τις τομές: \Delta _{2}A_{1}\bigcap_{}{}A_{2}B_{_{1}}≡Ε, A_{2}B_{1}\bigcap{B_{2}\Gamma _{1}}≡Ζ, B_{2}\Gamma_{1}\bigcap{}\Gamma_{2}\Delta _{1}≡Η, \Gamma _{2}\Delta _{1}\bigcap{}\Delta_{2}A_{1}≡Θ.
Να δειχθεί ότι το βαρύκεντρο* του τριγώνου ΚΒ'Γ' και η τομή των διαγωνίων του τετράπλευρου ΕΖΗΘ, συμπίπτουν.
Ας γράψω μια διαφορετική λύση:

Έστω ότι οι ΕΘ, ΗΖ τέμνουν την ΑΓ στα σημεία Τ, Ρ αντίστοιχα, έστω, ακόμα, Χ το μέσο του ΤΡ και (χ) η εκ του Χ μεσοπαράλληλος των πλευρών ΕΘ και ΖΗ του παραλληλογράμμου ΕΖΗΘ.

Επί της ευθείας (χ) κείται το κ.β. του παραλληλογράμμου ΕΖΗΘ. Είναι εύκολο να δείξουμε ότι επί της ευθείας (χ) κείται και το κ.β. και του τριγώνου Κ´ô

Πραγματικά, αρκεί να δείξουμε ότι KX=\frac{1}{3}K\Gamma '

Με το συνημμένο σχήμα έχουμε:

A\Gamma =3AT+3P\Gamma \Rightarrow AM_a=\Gamma M_a=\frac{3AT+3P\Gamma }{2} (1)

TP=2AT+2P\Gamma \Rightarrow XT=XP=AT+P\Gamma \:  (2)

Και

XM_a=XP+P\Gamma -\Gamma M_a=(AT+P\Gamma )+R\Gamma -\frac{3AT+3R\Gamma }{2}=\frac{P\Gamma -AT}{2}

XK=XT+AT-AK=(AT+P\Gamma )+AT-3AT=P\Gamma -AT

έτσι KX=2XM_a, οπότε KX=\frac{1}{3}K\Gamma '

Ομοίως, τα εν λόγω κ. β. κείνται επί της μεσοπαραλλήλου (ψ) των ΕΖ και ΘΗ, και επειδή οι (χ) και (ψ) τέμνονται σε ένα, ακριβώς, σημείο - όπως και οι παράλληλες προς αυτές ευθείες τέμνονται σε ένα, ακριβώς, σημείο-, τα δύο κ.β συμπίπτουν.
Αγαπητέ φίλε rek2,
Σε ευχαριστώ πολύ για το ενδιαφέρον σου και την απόδειξή σου, την οποία όμως δεν είχα τον χρόνο να μελετήσω. Θα τη μελετήσω και θα τοποθετηθώ σύντομα.
Πάντως, δεν μπόρεσα να ανοίξω το συνημμένο σου και δεν έχω πλήρη εικόνα της απόδειξης σου. Πρόκειται μόνο για το σχήμα;


Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#32

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Πέμ Οκτ 21, 2010 8:37 am

ΝΙΚΟΣ έγραψε:
rek2 έγραψε:
ΝΙΚΟΣ έγραψε:Πρόταση 8.(Σύμπτωση δύο σημείων τετράπλευρου).
9ι(170). Θεωρούμε κυρτό τετράπλευρο ΑΒΓΔ και τα συμμετρικά Β', Γ' της τομής Κ των διαγωνίων του ΑΓ, ΒΔ, ως προς τα μέσα Μα, Μβ τούτων, αντίστοιχα.
Τριχοτομούμε τις πλευρές ΑΒ, ΒΓ, ΓΔ, ΔΑ του τετράπλευρου, με τα ζεύγη των σημείων A_{1}-A_{2},B_{1}-B_{2}, \Gamma _{1}- \Gamma _{2}, \Delta _{1}-\Delta _{2}, αντίστοιχα και ορίζουμε τις τομές: \Delta _{2}A_{1}\bigcap_{}{}A_{2}B_{_{1}}≡Ε, A_{2}B_{1}\bigcap{B_{2}\Gamma _{1}}≡Ζ, B_{2}\Gamma_{1}\bigcap{}\Gamma_{2}\Delta _{1}≡Η, \Gamma _{2}\Delta _{1}\bigcap{}\Delta_{2}A_{1}≡Θ.
Να δειχθεί ότι το βαρύκεντρο* του τριγώνου ΚΒ'Γ' και η τομή των διαγωνίων του τετράπλευρου ΕΖΗΘ, συμπίπτουν.
Ας γράψω μια διαφορετική λύση:

Έστω ότι οι ΕΘ, ΗΖ τέμνουν την ΑΓ στα σημεία Τ, Ρ αντίστοιχα, έστω, ακόμα, Χ το μέσο του ΤΡ και (χ) η εκ του Χ μεσοπαράλληλος των πλευρών ΕΘ και ΖΗ του παραλληλογράμμου ΕΖΗΘ.

Επί της ευθείας (χ) κείται το κ.β. του παραλληλογράμμου ΕΖΗΘ. Είναι εύκολο να δείξουμε ότι επί της ευθείας (χ) κείται και το κ.β. και του τριγώνου Κ´ô

Πραγματικά, αρκεί να δείξουμε ότι KX=\frac{1}{3}K\Gamma '

Με το συνημμένο σχήμα έχουμε:

A\Gamma =3AT+3P\Gamma \Rightarrow AM_a=\Gamma M_a=\frac{3AT+3P\Gamma }{2} (1)

TP=2AT+2P\Gamma \Rightarrow XT=XP=AT+P\Gamma \:  (2)

Και

XM_a=XP+P\Gamma -\Gamma M_a=(AT+P\Gamma )+R\Gamma -\frac{3AT+3R\Gamma }{2}=\frac{P\Gamma -AT}{2}

XK=XT+AT-AK=(AT+P\Gamma )+AT-3AT=P\Gamma -AT

έτσι KX=2XM_a, οπότε KX=\frac{1}{3}K\Gamma '

Ομοίως, τα εν λόγω κ. β. κείνται επί της μεσοπαραλλήλου (ψ) των ΕΖ και ΘΗ, και επειδή οι (χ) και (ψ) τέμνονται σε ένα, ακριβώς, σημείο - όπως και οι παράλληλες προς αυτές ευθείες τέμνονται σε ένα, ακριβώς, σημείο-, τα δύο κ.β συμπίπτουν.
Αγαπητέ φίλε rek2,
Σε ευχαριστώ πολύ για το ενδιαφέρον σου και την απόδειξή σου, την οποία όμως δεν είχα τον χρόνο να μελετήσω. Θα τη μελετήσω και θα τοποθετηθώ σύντομα.
Πάντως, δεν μπόρεσα να ανοίξω το συνημμένο σου και δεν έχω πλήρη εικόνα της απόδειξης σου. Πρόκειται μόνο για το σχήμα;


Φιλικά
Νίκος Κυριαζής.
Αγαπητέ Κώστα,
τοποθετούμε στην απόδειξή σου, όπως σου έχω υποσχεθεί, ως εξής:
Πολύ ωραία η σκέψη σου και ο τρόπος της απόδειξή σου. Όμως, πιθανόν επειδή δεν μπόρεσα να ανοίξω το συνημμένο σου για να ιδώ το σχήμα σου, δεν μπορώ να αντιληφθώ πως από την ΚΧ=ΧΜα συμπεραίνεις ότι είναι και ΚΧ=1/3.ΚΓ'; Μήπως εσύ στο σχήμα σου το Γ', το έχεις στην ΑΓ και όχι στην ΒΔ που προβλέπει η Πρόταση 8 και φαίνεται στο σχήμα μου 46 (συνημμένο μου 56); Αλλά και πάλι πως προκύπτει τούτο;


Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#33

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Παρ Ιαν 07, 2011 5:34 pm

Πρόταση 9 ( Ζεύγος τριγώνων τετραπλά ομολογικών).

10ι(144). Υπάρχει ζεύγος συνεπίπεδων τριγώνων τετραπλά ομολογικών; Αν ναι, να κατασκευασθεί το άλλο τρίγωνο, αν μας δίνεται το ένα απ’ αυτά.*

Σημείωση.
* Ζεύγος συνεπίπεδων τριγώνων τετραπλά ομολογικών, δεν έχω συναντήσει μέχρι σήμερα στην βιβλιογραφία, εκτός από το βιβλίο «Νέα Στοιχεία Γεωμετρίας» § 2ζ(69) του υποφαινομένου, ενώ ζεύγος συνεπίπεδων τριγώνων τριπλά ομολογικών έχω δει στα βιβλία: Μαθηματικές Ολυμπιάδες του Δημ. Κοντογιάννη § 494, Προβολική Γεωμετρία του Μαυρίκιου Μπρίκα Πρόταση 5 Κεφάλαιο 4 και στο παραπάνω αναφερόμενο βιβλίο μου § 2ζ(37), § 4η(61) § 4η(62) § και § 4η(84).
Η κατασκευή αυτή έχει καταχωρηθεί στο παραπάνω βιβλίο μου § 10ι(144).
(Παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου).

ΚΑΛΗ ΧΡΟΝΙΑ.

Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#34

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Δευ Ιαν 10, 2011 5:00 pm

ΝΙΚΟΣ έγραψε:Πρόταση 9 ( Ζεύγος τριγώνων τετραπλά ομολογικών).

10ι(144). Υπάρχει ζεύγος συνεπίπεδων τριγώνων τετραπλά ομολογικών; Αν ναι, να κατασκευασθεί το άλλο τρίγωνο, αν μας δίνεται το ένα απ’ αυτά.*

Σημείωση.
* Ζεύγος συνεπίπεδων τριγώνων τετραπλά ομολογικών, δεν έχω συναντήσει μέχρι σήμερα στην βιβλιογραφία, εκτός από το βιβλίο «Νέα Στοιχεία Γεωμετρίας» § 2ζ(69) του υποφαινομένου, ενώ ζεύγος συνεπίπεδων τριγώνων τριπλά ομολογικών έχω δει στα βιβλία: Μαθηματικές Ολυμπιάδες του Δημ. Κοντογιάννη § 494, Προβολική Γεωμετρία του Μαυρίκιου Μπρίκα Πρόταση 5 Κεφάλαιο 4 και στο παραπάνω αναφερόμενο βιβλίο μου § 2ζ(37), § 4η(61) § 4η(62) § και § 4η(84).
Η κατασκευή αυτή έχει καταχωρηθεί στο παραπάνω βιβλίο μου § 10ι(144).
(Παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου).



Φιλικά
Νίκος Κυριαζής.
Αγαπητοί φίλοι,
για να διευκολύνουμε τους ενδιαφερόμενους φίλους, στην απάντηση του παραπάνω ερωτήματος και στην επίτευξη της παραπάνω ζητούμενης κατασκευής, τους προτείνουμε να ανατρέξουν και να μελετήσουν την εργασία των Απλών Αρμονικών Εξάπλευρων, που έχουμε δώσει σε άλλη θέση του mathematica. gr.


Φιλικά
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡΊΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#35

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Τετ Ιαν 12, 2011 4:08 pm

ΝΙΚΟΣ έγραψε:
ΝΙΚΟΣ έγραψε:Πρόταση 9 ( Ζεύγος τριγώνων τετραπλά ομολογικών).

10ι(144). Υπάρχει ζεύγος συνεπίπεδων τριγώνων τετραπλά ομολογικών; Αν ναι, να κατασκευασθεί το άλλο τρίγωνο, αν μας δίνεται το ένα απ’ αυτά.*

Σημείωση.
* Ζεύγος συνεπίπεδων τριγώνων τετραπλά ομολογικών, δεν έχω συναντήσει μέχρι σήμερα στην βιβλιογραφία, εκτός από το βιβλίο «Νέα Στοιχεία Γεωμετρίας» § 2ζ(69) του υποφαινομένου, ενώ ζεύγος συνεπίπεδων τριγώνων τριπλά ομολογικών έχω δει στα βιβλία: Μαθηματικές Ολυμπιάδες του Δημ. Κοντογιάννη § 494, Προβολική Γεωμετρία του Μαυρίκιου Μπρίκα Πρόταση 5 Κεφάλαιο 4 και στο παραπάνω αναφερόμενο βιβλίο μου § 2ζ(37), § 4η(61) § 4η(62) § και § 4η(84).
Η κατασκευή αυτή έχει καταχωρηθεί στο παραπάνω βιβλίο μου § 10ι(144).
(Παρακαλούμε, όπως οι απαντήσεις σας γίνονται μέσα στο πνεύμα που αναφέρεται στην αρχή του παρόντος χώρου).



Φιλικά
Νίκος Κυριαζής.
Αγαπητοί φίλοι,
για να διευκολύνουμε τους ενδιαφερόμενους φίλους, στην απάντηση του παραπάνω ερωτήματος και στην επίτευξη της παραπάνω ζητούμενης κατασκευής, τους προτείνουμε να ανατρέξουν και να μελετήσουν την εργασία των Απλών Αρμονικών Εξάπλευρων, που έχουμε δώσει σε άλλη θέση του mathematica. gr.


Φιλικά
Νίκος Κυριαζής.
Αγαπητοί φίλοι,
επειδή μέχρι τώρα δεν έχει δοθεί από φίλους απάντηση στο παραπάνω ερώτημα και λύση στο Πρόβλημα 10ι(144), θα δώσουμε τη δική μας απάντηση και λύση.
Η απάντηση είναι καταφατική. Ναι υπάρχει μία λύση ζεύγους διδύμων τριγώνων Απλού Αρμονικού Εξάπλευρου, την οποία έχουμε αναφέρει Εδώ
, αλλά μόνο σαν ιδέα [Γενικές παρατηρήσεις (γ)].
Τώρα, με το συνημμένο μας 81, δίνουμε Εδώ, μια σχετική λύση, ενώ μία δεύτερη λύση θα ακολουθήσει ξανά Εδώ, με άλλο συνημμένο μας, καθώς Εδώ, στην εργασία μας «Απλά Αρμονικά Εξάπλευρα», υπάρχει όλη η θεωρία (Ορολογία, Λήμματα, Κριτήρια, Προτάσεις, Κατασκευές), στην οποία μπορεί να βασισθεί μια τέτοια πραγματικά δύσκολη κατασκευή.


Με αγάπη
Νίκος Κυριαζής.


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡIΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#36

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Κυρ Ιαν 14, 2018 11:20 am

Νέα Σημαντική Ιδιότητα του Ορθόκεντρου.

Αγαπητοί φίλοι, φίλοι της Γεωμετρίας, σας προτείνω για απόδειξη την παρα-κάτω Γεωμετρική Πρόταση, με μια σημαντική ιδιότητα του ορθόκεντρου τριγώ-νου.

Την ιδιότητα αυτή του ορθόκεντρου επινόησα πρόσφατα και πιστεύω ότι πρώτο- εμφανίζεται εδώ:

Πρόταση 11/34.
Το ριζικό κέντρο, κάθε τριάδας τυχαίων κύκλων με χορδές τα ύψη οξυγώνιου τριγώνου, συμπίπτει με το ορθόκεντρο που τριγώνου αυτού».

Λεπτομέρειες στο παρακάτω συνημμένο μου 297.

Τη δική μου απόδειξη θα αναρτήσω εδώ με το συνημμένο μου 297, σε εύλογο χρονικό διάστημα.


Φιλικά
Νίκος Κυριαζής

ΥΣ: Την Πρόταση αυτή με την απόδειξή της, καταχώρησα και στον τόμο 11, του βιβλίου μου «Νέα στοιχεία Γεωμετρίας», στην παράγραφο 11/34.
Συνημμένα
Συνημμένο 297..doc
(21 KiB) Μεταφορτώθηκε 119 φορές


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡIΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#37

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Δευ Ιαν 22, 2018 2:28 pm

Αγαπητοί φίλοι, φίλοι της Γεωμετρίας και όχι μόνο,
με το παρακάτω συνημμένο μου 297, αναρτώ την δική μου απόδειξη της Γεωμετρικής Πρότασης μου με αριθμό 11/34, όπως παραπάνω σας είχα υποσχεθεί.

Παρακαλώ για τα σχόλιά σας και τις δικές σας αποδείξεις της Πρότασης αυτής.


Φιλικά
Νίκος Κυριαζής
Συνημμένα
Συνημμένο 297..doc
(28 KiB) Μεταφορτώθηκε 128 φορές


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡIΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#38

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Παρ Νοέμ 12, 2021 11:50 am

Τριχοτόμηση γωνίας.

Αγαπητοί φίλοι, φίλοι της Γεωμετρίας,
με το παρακάτω συνημμένο μου, με αριθμό 303, αναρτώ ένα άλλο νέο μου Θεώρημα με αριθμό 31 με το σχήμα του, το οποίο αναφέρται σε τρχοτόμηση γωνίας.
Παρακαλώ για τις δικές σας αποδείξεις του και τα σχετικά σχόλιά σας.

Επομένως, βασιζόμενοι στο παραπάνω Θεώρημα, θα μας είναι εύκολη και η απόδειξη-λύση σχετικών Προτάσεων και Προβλημάτων, τα οποία θα μας δίνονται μελλοντικά.

Δική μου σχετική απόδειξη, θα ακολουθήσει σε εύλογο χρονικό διάστημα.


Με Γεωμετρική Αγάπη
Νίκος Κυριαζής.

Συνημμένο 303..doc
(20.5 KiB) Μεταφορτώθηκε 102 φορές


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡIΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#39

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Σάβ Νοέμ 20, 2021 10:07 am

Αγαπητοί φίλοι, φίλοι της Γεωμετρίας.

Με το παρακάτω συνημμένο μου 303, το οποίο και επαναφέρω συ-μπληρωμένο, αναρτώ, όπως έχω υποσχεθεί, τη δική μου απόδειξη του παραπάνω Θεωρήματος 31 , που αφορά στην απόδειξη των τριχοτό-μων της γωνίας ΕΑΖ του σχήματος 24.

Όπως, στο συνημμένο 303 αναφέρεται, η απόδειξη του Θεωρήματος 31 αποτελεί μια απλή εφαρμογή της απόδειξης της κατασκευής 29, την οποία θα βρείτε στο παρακάτω συνημμένο μου 302.

Παρακαλώ για τις δικές σας αποδείξεις και για τα σχετικά σχόλιά σας.


Με Γεωμετρική Αγάπη
Νίκος Κυριαζής.
https://www.mathematica.gr/forum/viewto ... &start=580


Συνημμένο 303..doc
(25.5 KiB) Μεταφορτώθηκε 82 φορές
Συνημμένο 302.doc
(209 KiB) Μεταφορτώθηκε 73 φορές


ΝΙΚΟΣ
Διακεκριμένο Μέλος
Δημοσιεύσεις: 1667
Εγγραφή: Παρ Νοέμ 13, 2009 8:35 pm
Τοποθεσία: Καλαμαριά (Θεσσαλονίκη).

Re: ΓΕΩΜΕΤΡIΑ. ΠΡΩΤΟΕΜΦΑΝΙΖΟΜΕΝΕΣ ΠΡΟΤΑΣΕΙΣ.

#40

Μη αναγνωσμένη δημοσίευση από ΝΙΚΟΣ » Τετ Δεκ 14, 2022 12:15 pm

Πρόταση 10. ΤΡΙΓΩΝΑ ΜΕ ΚΟΙΝΑ ΣΗΜΕΙΑ GERGONNE.

Αγαπητοί φίλοι, φίλοι της Γεωμετρίας,
με το παρακάτω συνημμένο μου, με αριθμό 309, αναρτώ μία άλλη νέα μου Πρόταση, η οποία αναφέρται σε τρίγωνα με ΜΕ ΚΟΙΝΑ ΣΗΜΕΙΑ GERGONNE.
Παρακαλώ για τις δικές σας αποδείξεις του και τα σχετικά σχόλιά σας.

Επομένως, βασιζόμενοι στην παραπάνω Πρόταση, θα μας είναι εύκολη και η απόδειξη-λύση σχετικών Προτάσεων και Προβλημάτων, τα οποία θα μας δίνονται μελλοντικά.

Δική μου σχετική απόδειξη, θα ακολουθήσει σε εύλογο χρονικό διάστημα.


Με Γεωμετρική Αγάπη
Νίκος Κυριαζής.
Συνημμένο 309.doc
(23 KiB) Μεταφορτώθηκε 73 φορές
τελευταία επεξεργασία από ΝΙΚΟΣ σε Κυρ Δεκ 18, 2022 8:23 am, έχει επεξεργασθεί 1 φορά συνολικά.


Απάντηση

Επιστροφή σε “Γεωμετρία (Seniors) - Παλαιότερες Συζητήσεις”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 2 επισκέπτες