Η αναζήτηση βρήκε 1349 εγγραφές

από exdx
Παρ Οκτ 04, 2019 2:04 pm
Δ. Συζήτηση: Γεωμετρία
Θέμα: Μέγιστος κύκλος
Απαντήσεις: 3
Προβολές: 312

Μέγιστος κύκλος

Να αποδειχθεί ότι το εμβαδόν του εγγεγραμμένου σε ισοσκελές τρίγωνο (με σταθερές ίσες πλευρές ) κυκλικού δίσκου μεγιστοποιείται , όταν αυτό γίνει ισόπλευρο . Υ.Γ. Έχω μια λύση η οποία στηρίζεται στο $R\geqslant 2r$ . Κάτι απλούστερο ; Edit (Αλλαγή διατύπωσης - Δείτε την επόμενη δημοσίευση - ευχαριστ...
από exdx
Πέμ Οκτ 03, 2019 9:05 pm
Δ. Συζήτηση: Γενικά
Θέμα: Σύστημα και μέγιστο
Απαντήσεις: 1
Προβολές: 295

Σύστημα και μέγιστο

Δίνεται ο αριθμός $a$ με $a>1$ και οι γραμμές με εξισώσεις $a\left | x \right |-\left | y \right |=1$ και $\left | x \right |+a\left | y \right |=a$ α) Δείξετε ότι οι γραμμές έχουν τέσσερα κοινά σημεία τα οποία ανήκουν σε σταθερό κύκλο β) Βρείτε το μέγιστο εμβαδόν του τετραπλεύρου που ορίζουν αυτά τ...
από exdx
Τρί Σεπ 24, 2019 10:51 pm
Δ. Συζήτηση: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ
Θέμα: Οπωσδήποτε φθίνουσα
Απαντήσεις: 9
Προβολές: 596

Re: Οπωσδήποτε φθίνουσα

Ας τροποποιήσουμε τον τύπο , ώστε να ορίζεται σε διάστημα (με το ίδιο ερώτημα )
g(x)=\left\{\begin{matrix} -x,x\leq 0\\ 1/x,x>0 \end{matrix}\right.
από exdx
Δευ Σεπ 23, 2019 10:10 pm
Δ. Συζήτηση: ΔΗΜΟΤΙΚΟ
Θέμα: Σύστημα για Ε΄Δημ
Απαντήσεις: 3
Προβολές: 510

Σύστημα για Ε΄Δημ

Από το σχολικό βιβλίο της Ε΄Δημοτικού

Ο Νίκος έχει στη συλλογή των παιχνιδιών του αυτοκίνητα και ποδήλατα, που είναι συνολικά 24
κι έχουν όλα μαζί 62 ρόδες. Να βρεις πόσα αυτοκίνητα και πόσα ποδήλατα έχει.

Οι συγγραφείς προτείνουν λύση με διερεύνηση . Κάτι άλλο ;
από exdx
Παρ Σεπ 20, 2019 6:44 pm
Δ. Συζήτηση: Γενικά
Θέμα: Oδηγίες Α΄και Β΄Λυκείου 2019-20
Απαντήσεις: 0
Προβολές: 260

Oδηγίες Α΄και Β΄Λυκείου 2019-20

από exdx
Παρ Σεπ 20, 2019 6:34 pm
Δ. Συζήτηση: ΕΠΑ.Λ.
Θέμα: Επαναληπτικές 2019
Απαντήσεις: 0
Προβολές: 537

Επαναληπτικές 2019

από exdx
Τρί Ιουν 18, 2019 12:14 am
Δ. Συζήτηση: Διάφορα άλλα θέματα εξετάσεων
Θέμα: Κορεατικές εισαγωγικές εξετάσεις στα μαθηματικά 2019 (Β) [11-20]
Απαντήσεις: 12
Προβολές: 1451

Re: Κορεατικές εισαγωγικές εξετάσεις στα μαθηματικά 2019 (Β) [11-20]

14. Η γραφική παράσταση του δευτεροβάθμιου τριωνύμου $\displaystyle{y=f(x)}$ και της ευθείας $\displaystyle{y=g(x)}$ φαίνονται στο παρακάτω σχήμα. korean_2019b_14.png Ποιο είναι το άθροισμα των φυσικών αριθμών που ικανοποιούν την ανίσωση $\displaystyle \left ( \dfrac{1}{2} \right )^{f(x)g(x)} \geq ...
από exdx
Δευ Ιουν 17, 2019 9:30 pm
Δ. Συζήτηση: Διάφορα άλλα θέματα εξετάσεων
Θέμα: Κορεατικές εισαγωγικές εξετάσεις στα μαθηματικά 2019 (Β) [11-20]
Απαντήσεις: 12
Προβολές: 1451

Re: Κορεατικές εισαγωγικές εξετάσεις στα μαθηματικά 2019 (Β) [11-20]

18. Στο ορθογώνιο τρίγωνο του σχήματος είναι, $AB=1$, $\displaystyle \angle B = \frac{\pi}{2} $. Έστω $D$ το σημείο τομής της διχοτόμου της γωνίας $C$ με την πλευρά $AB$ και $E$ το σημείο τομής του κύκλου κέντρου $A$ και ακτίνας $AD$ με την πλευρά $AC$. Έστω $S(\theta)$ το εμβαδόν του κυκλικού τομέ...
από exdx
Δευ Ιουν 17, 2019 4:46 pm
Δ. Συζήτηση: Διάφορα άλλα θέματα εξετάσεων
Θέμα: Κορεατικές εισαγωγικές εξετάσεις στα μαθηματικά 2019 (Β) [11-20]
Απαντήσεις: 12
Προβολές: 1451

Re: Κορεατικές εισαγωγικές εξετάσεις στα μαθηματικά 2019 (Β) [11-20]

16. Η συνεχής συνάρτηση $f(x)$ που ορίζεται για $x>0$, για όλα τα θετικά $x$ ικανοποιεί την σχέση $\displaystyle 2f(x)+\dfrac{1}{x^2} f\left ( \dfrac{1}{x} \right)= \dfrac{1}{x}+\dfrac{1}{x^2}$. Ποια είναι η τιμή του ολοκληρώματος $\displaystyle \int\limits_{\frac{1}{2}}^{2} f(x)dx$; [4 μόρια] $\di...
από exdx
Τρί Ιουν 11, 2019 11:50 am
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Δ19 ή Δ18 ;
Απαντήσεις: 1
Προβολές: 706

Δ19 ή Δ18 ;

Δίνεται η συνάρτηση $\displaystyle f$ με τύπο $\displaystyle f\left( x \right)=\left( x-1 \right)\ln \left( {{x}^{2}}-2x+2 \right)+\alpha x+\beta $ ,όπου $\displaystyle x,\,\alpha ,\beta \in R$ Δ1. Να αποδείξετε ότι για κάθε $\displaystyle \alpha ,\beta \in R$ παρουσιάζει μοναδικό σημείο καμπής και ...
από exdx
Δευ Ιουν 10, 2019 5:07 pm
Δ. Συζήτηση: Πανελλήνιες Εξετάσεις
Θέμα: Μαθηματικά προσανατολισμού 2019 (Θέματα & Λύσεις)
Απαντήσεις: 57
Προβολές: 9628

Re: Μαθηματικά προσανατολισμού 2019 (Θέματα & Λύσεις)

Για το ολοκλήρωμα ( στο πνεύμα του Σταμάτη παραπάνω ) $\displaystyle \begin{gathered} I = \int_1^2 {\left[ {(x - 1)ln({x^2} - 2x + 2)} \right]} \,dx = \frac{1}{2}\int_1^2 {\left[ {2(x - 1)ln({x^2} - 2x + 2)} \right]} dx \hfill \\ u = {x^2} - 2x + 2 \Rightarrow du = 2(x - 1)dx, \hfill \\ x = 1 \Right...
από exdx
Δευ Ιουν 10, 2019 12:05 pm
Δ. Συζήτηση: Πανελλήνιες Εξετάσεις
Θέμα: Μαθηματικά προσανατολισμού 2019 (Θέματα & Λύσεις)
Απαντήσεις: 57
Προβολές: 9628

Re: Μαθηματικά προσανατολισμού 2019 (Θέματα & Λύσεις)

ΘΕΜΑ Α A1. α)Ορισμός , σχολικό βιβλίο, σελ. 15 β) i. Όταν είναι $\displaystyle 1-1$ στο $\displaystyle A$ ( Σχολικό σελ 35) ii. Αν $\displaystyle f(A)$ είναι το σύνολο τιμών της $\displaystyle f$ τότε η αντίστροφη είναι η $\displaystyle g:f(A) \to R$με την οποία κάθε $\displaystyle y \in f(A)$ αντισ...
από exdx
Σάβ Μαρ 30, 2019 7:30 pm
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Μονάδες μέτρησης ΡΜ
Απαντήσεις: 2
Προβολές: 458

Re: Μονάδες μέτρησης ΡΜ

Νομίζω ότι ο φάκελλος είναι ακατάλληλος για το ερώτημα
΄Ενας παρόμοιος προβληματισμός εδώ
από exdx
Παρ Μαρ 22, 2019 9:54 am
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Πόσο χαμηλά έπεσα
Απαντήσεις: 5
Προβολές: 572

Re: Πόσο χαμηλά έπεσα

από exdx
Τρί Μαρ 19, 2019 9:54 pm
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Με απλά υλικά (21)
Απαντήσεις: 1
Προβολές: 395

Με απλά υλικά (21)

Από ένα φύλλο λαμαρίνας διαστάσεων \displaystyle 2mx2m θα κατασκευαστεί ένα κουτί με καπάκι . Αποκόπτουμε δύο τετράγωνα και δυο ορθογώνια όπως στο σχήμα και συγκολλούμε τις ακμές . Ποιος είναι ο μέγιστος όγκος του κουτιού ;
από exdx
Τρί Μαρ 19, 2019 2:25 pm
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Ύπαρξη μοναδικού ρ
Απαντήσεις: 5
Προβολές: 477

Re: Ύπαρξη μοναδικού ρ

Να δείξετε ότι υπάρχει μοναδικό \rho \epsilon \mathbb{R} : f(\rho )=0 και f(-\rho )=4

Αυτό συμβαίνει διότι η γραφική παράσταση έχει
κέντρο συμμετρίας το \displaystyle A(0,2)
από exdx
Δευ Μαρ 18, 2019 9:44 am
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Με απλά υλικά (20)
Απαντήσεις: 1
Προβολές: 365

Με απλά υλικά (20)

Δίνεται ο πραγματικός αριθμός \displaystyle a>0 και η συνάρτηση με τύπο \displaystyle f(x)={{e}^{x-a}}-ax\ln x\, , για κάθε \displaystyle x>0 .
Να βρείτε το σημείο καμπής της \displaystyle {{C}_{f}} με τη μέγιστη δυνατή τεταγμένη .
από exdx
Κυρ Μαρ 17, 2019 7:49 pm
Δ. Συζήτηση: ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Γ'
Θέμα: Με απλά υλικά (19)
Απαντήσεις: 3
Προβολές: 863

Re: Με απλά υλικά (19)

function.png Ευχαριστώ τον Αποστόλη και το Ροδόλφο για τις απαντήσεις. Αν κάποιος κάνει το σχήμα όπως ζητήθηκε , μπορεί να εμπνευστεί τις συναρτήσεις- φράγματα που απαιτούνται . Οι ανισότητες αποδεικνύονται και αλγεβρικά . Με την ευκαιρία : Ο μαθητής υποχρεούται να γνωρίζει την αντικατάσταση $\disp...
από exdx
Πέμ Μαρ 14, 2019 8:54 am
Δ. Συζήτηση: ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Γ'
Θέμα: Με απλά υλικά (19)
Απαντήσεις: 3
Προβολές: 863

Με απλά υλικά (19)

Δίνεται η συνάρτηση με τύπο $\displaystyle f(x)=\frac{1}{1+{{x}^{2}}},x\in R$. α) Να τη μελετήσετε ως προς τη μονοτονία , τα ακρότατα , την κυρτότητα και τα σημεία καμπής . β) Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της $\displaystyle f$ και να σχεδιάσετε τη γραφική παράσταση . γ) Να βρείτε...

Επιστροφή στην ειδική αναζήτηση