Η αναζήτηση βρήκε 15024 εγγραφές

από Mihalis_Lambrou
Παρ Μαρ 01, 2024 11:39 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, ΚΥΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Μαθηματική Ολυμπιάδα Μόσχας 2024 (7η τάξη)
Απαντήσεις: 2
Προβολές: 107

Re: Μαθηματική Ολυμπιάδα Μόσχας 2024 (7η τάξη)

Πρόβλημα 2. Ο Κωνσταντίνος επισκέφτηκε ένα μουσείο σύγχρονης τέχνης και είδε έναν τετράγωνο πίνακα σε κορνίζα παράξενης μορφής, που αποτελείται από $21$ ίσα τρίγωνα. Ο Κωνσταντίνος αναρωτήθηκε, με τι ισούνται οι γωνίες αυτών των τριγώνων. Βοηθήστε τον να τις βρει. [5 μόρια] (Ι. Ρούσκιχ) Από την πάν...
από Mihalis_Lambrou
Παρ Μαρ 01, 2024 11:27 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, ΚΥΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Μαθηματική Ολυμπιάδα Μόσχας 2024 (7η τάξη)
Απαντήσεις: 2
Προβολές: 107

Re: Μαθηματική Ολυμπιάδα Μόσχας 2024 (7η τάξη)

Al.Koutsouridis έγραψε:
Παρ Μαρ 01, 2024 9:56 pm
Πρόβλημα 1. Τοποθετήστε στα κελιά ενός 3 \times 3 πίνακα διαφορετικούς θετικούς ακέραιους αριθμούς, όχι μεγαλύτερους του 25, έτσι, ώστε σε οποιοδήποτε ζεύγος γειτονικών κατά πλευρά κελιών ο ένας αριθμός να διαιρείται με τον άλλον. [4 μόρια] (Ι. Ιάσενκο)
.
από Mihalis_Lambrou
Πέμ Φεβ 29, 2024 10:25 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Ένα άθροισμα
Απαντήσεις: 1
Προβολές: 72

Re: Ένα άθροισμα

Να δειχθεί ότι: $\displaystyle{\sum_{k \; \text{even}} \binom{n+1}{k} = \sum_{k \; \text{odd}} \binom{n+1}{k} = 2^n}$ Αν ο φάκελος δεν είναι σωστός, παρακαλώ όπως μετακινηθεί ... Χρειάζεται το ανάπτυγμα του διωνύμου. Κατά τα άλλα είναι πολλή κοινή άσκηση που υπάρχει σε όλα τα βιβλία που έχουν το θα...
από Mihalis_Lambrou
Τρί Φεβ 27, 2024 9:25 am
Δ. Συζήτηση: Μαθηματικά Κείμενα-Μελέτες
Θέμα: Η ιστορία της υποδιαστολής (νέα δεδομένα)
Απαντήσεις: 1
Προβολές: 156

Re: Η ιστορία της υποδιαστολής (νέα δεδομένα)

Και άλλη μία δημοσιογραφική αναφορά εδώ. Είναι πιο πλούσια από την προηγούμενη παραπομπή. Βρίσκεται στο πρώτης ποιότητας εβδομαδιαίο περιοδικό Nature που ασχολείται με την ενημέρωση και διάδοση θεμάτων της τρέχουσας επιστημονικής δραστηριότητας.
από Mihalis_Lambrou
Δευ Φεβ 26, 2024 9:03 pm
Δ. Συζήτηση: Μαθηματικά Κείμενα-Μελέτες
Θέμα: Η ιστορία της υποδιαστολής (νέα δεδομένα)
Απαντήσεις: 1
Προβολές: 156

Η ιστορία της υποδιαστολής (νέα δεδομένα)

Μόλις πριν από δέκα μέρες δημοσιεύτηκε στο Historia Mathematica ένα ενδιαφέρον άρθρο (στα αγγλικά) του έγκριτου ιστορικού Glen Van Brummelen, Decimal fractional numeration and the decimal point in 15th-century Italy. Αφορά νέο εύρημα της ιστορίας της υποδιαστολής στο δεκαδικό σύστημα αρίθμησης. Βλέπ...
από Mihalis_Lambrou
Κυρ Φεβ 25, 2024 11:03 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, ΚΥΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Τεστ Εξάσκησης (58), Μικροί
Απαντήσεις: 10
Προβολές: 735

Re: Τεστ Εξάσκησης (58), Μικροί

[Λέγοντας ότι ...για την μέγιστη τιμή του $abc$ ισχύει ότι... Επειδή οι a,b,c θετικοί, το abc αποκτά μέγιστη τιμή όταν a,b,c αποκτούν την μέγιστή τους τιμή . Σας ευχαριστώ πολύ Δεν απάντησες στο ερώτημα που σου έθεσα. Ας είναι. Δυστυχώς και αυτό που έγραψες τώρα είναι εσφαλμένο. Φαίνεται να νομίζει...
από Mihalis_Lambrou
Κυρ Φεβ 25, 2024 9:54 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, ΚΥΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Τεστ Εξάσκησης (58), Μικροί
Απαντήσεις: 10
Προβολές: 735

Re: Τεστ Εξάσκησης (58), Μικροί

Έπειτα απέδειξα ότι $a^2 + b^2 + c^2 + a^2b + b^2c + c^2a \geq max$ $abc$ Διασταυρωθήκαν τα μηνύματά μας καθώς συμπλήρωνα την αρχική μου ανάρτηση με ένα παράδειγμα (βλέπε τις έξι τελευταίες γραμμές). Τώρα έχω ήδη απαντήσει με παράδειγμα σε αυτό που ισχυρίζεσαι. Ας προσθέσω ότι αυτό που γράφεις τώρα...
από Mihalis_Lambrou
Κυρ Φεβ 25, 2024 9:24 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, ΚΥΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Τεστ Εξάσκησης (58), Μικροί
Απαντήσεις: 10
Προβολές: 735

Re: Τεστ Εξάσκησης (58), Μικροί

Συνεπώς, ακόμη και για την μέγιστη τιμή του $abc$ (δηλ. 1) , έχουμε: $a^2 + b^2 + c^2 + a^2b + b^2c + c^2a\geq 6\sqrt[6]{1} $ Για ξαναδές το αυτό γιατί πρόκειται για λογικό σφάλμα. Με λίγα λόγια, αν ισχύει $A\ge B$ με $A,B$ μεταβλητά, δεν έπεται ότι $A \ge \max B$. Ας δούμε ένα απλό παράδειγμα που ...
από Mihalis_Lambrou
Σάβ Φεβ 24, 2024 5:39 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Ανισότητα με τρεις μεταβλητές
Απαντήσεις: 1
Προβολές: 223

Ανισότητα με τρεις μεταβλητές

Έστω p,q,r θετικοί αριθμοί με p+q+r=3. Να αποδειχθεί ότι

\displaystyle{\dfrac {p}{p^2+qr+1} + \dfrac {q}{q^2+rp+1}+ \dfrac {r}{r^2+pq+1}\le 1}
από Mihalis_Lambrou
Παρ Φεβ 23, 2024 9:25 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ
Θέμα: Κριτήριο υποχώρων
Απαντήσεις: 1
Προβολές: 125

Re: Κριτήριο υποχώρων

Καλησπέρα, έχω μια απορία, έχω τον υποχωρο $U=< \begin{pmatrix} 1\\ i\\ 0 \end{pmatrix}> \subset \mathbb{C}^{3} $ Αλλά δεν μπορώ να καταλάβω πως δείχνω ότι το μηδενικό διάνυσμα ανοίκει στον U, για να γίνει αυτό πρέπει να πολλαπλασιάσω όλες τις συντεταγμένες με το μηδέν, αλλά τότε όλοι οι μονοδιάστα...
από Mihalis_Lambrou
Παρ Φεβ 23, 2024 9:08 pm
Δ. Συζήτηση: Χρήσιμες Μαθηματικές Ιστοσελίδες
Θέμα: Εικόνες από τα μοντέλα των πολυέδρων του Max Bruckner (1900)
Απαντήσεις: 0
Προβολές: 79

Εικόνες από τα μοντέλα των πολυέδρων του Max Bruckner (1900)

. Στην ιστοσελίδα εδώ υπάρχει ένα άρθρο στα Αγγλικά με εικόνες και κάποια σχόλια των μοντέλων πολυέδρων που έφτιαξε ο Γερμανός Μαθηματικός (Γεωμέτρης) Johannes Max Brückner (1860 –1934). Λίγα λόγια για τον ίδιο, στην Wikipedia εδώ . Tο γνωστότερό του βιβλίο είναι το κορυφαίο Vielecke und Vielflache...
από Mihalis_Lambrou
Παρ Φεβ 23, 2024 12:13 pm
Δ. Συζήτηση: ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α'
Θέμα: Μπιλιάρδα και γεωμετρία
Απαντήσεις: 6
Προβολές: 418

Re: Μπιλιάρδα και γεωμετρία

Εν τω μεταξύ υπάρχουν ολόκληρα βιβλία για το γεωμετρικό μπιλιάρδο, διάφορων σχημάτων. Και αυτό που είναι άκρως ενδιαφέρον στην Ελληνική βιβλιογραφία, λόγω της παλαιότητάς του και του τόπου έκδοσης, είναι το παρακάτω βιβλιαράκι που εκδόθηκε στην Οδυσσό το 1836: Απόστολου Χαρικλέους, Τέρψις Μαθηματικ...
από Mihalis_Lambrou
Παρ Φεβ 23, 2024 11:28 am
Δ. Συζήτηση: Α ΓΥΜΝΑΣΙΟΥ
Θέμα: Ζητείται το άθροισμα
Απαντήσεις: 5
Προβολές: 291

Re: Ζητείται το άθροισμα

Silver έγραψε:
Παρ Φεβ 23, 2024 10:29 am
Καλημέρα, δεν πρέπει όμως Y\neq Z;
Η εκφώνηση δεν λέει τέτοιο πράγμα. Αν θέσεις Y\neq Z τότε η άσκηση δεν έχει λύση, τουλάχιστον όπως το είδα κοιτώντας το κάπως πρόχειρα.
από Mihalis_Lambrou
Παρ Φεβ 23, 2024 8:43 am
Δ. Συζήτηση: ΑΝΑΛΥΣΗ
Θέμα: Σύγκλιση ακολουθίας συναρτήσεων 19
Απαντήσεις: 3
Προβολές: 223

Re: Σύγκλιση ακολουθίας συναρτήσεων 19

Ένα επιπλέον ερώτημα για την ίδια ακολουθία είναι αν αυτή συγκλίνει ομοιόμορφα στο διάστημα $({0,\pi}]$ ή σε οποιοδήποτε διάστημα της μορφή $({0,a}]$, για σταθερό $a$, Ναι, συγκλίνει ομοιόμορφα: Από την $\displaystyle{ 1-\cos u \le u}$ για $u>0$ έχουμε για $x$ στο φραγμένο διάστημα $[0,a]$ ότι $\di...
από Mihalis_Lambrou
Πέμ Φεβ 22, 2024 8:44 pm
Δ. Συζήτηση: Θεωρία Αριθμών - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Ένα γινόμενο πρώτων παραγόντων
Απαντήσεις: 3
Προβολές: 508

Re: Ένα γινόμενο πρώτων παραγόντων

Εάν συνεχίσουμε με αυτόν τον τρόπο για όλους τους πρώτους τους μικρότερους του $53$, θα βρούμε ότι: Αν είναι να κάνουμε για τον κάθε πρώτο μέχρι το $100$ και για κάθε $1\le N\le 100$, και κάθε επιτρεπτό $k$ την πράξη $\displaystyle{ \left [ \dfrac {N}{p^k} \right ]}$ (γνωστό ως ιδιότητα Legendre) κ...
από Mihalis_Lambrou
Πέμ Φεβ 22, 2024 8:29 pm
Δ. Συζήτηση: Α ΓΥΜΝΑΣΙΟΥ
Θέμα: Ζητείται το άθροισμα
Απαντήσεις: 5
Προβολές: 291

Re: Ζητείται το άθροισμα

Στην παρακάτω πρόσθεση: $\displaystyle{7XYZ + A8BZ = C51BZ}$, γνωρίζουμε ότι ο αριθμός $\displaystyle{C51BZ}$ διαιρείται με το $\displaystyle{9}$ Να βρείτε ποια είναι τα άγνωστα ψηφία των πιο πάνω αριθμών. Χωρίς την αιτιολόγηση που είναι απλή αλλά η πληκτρολόγιση λίγο εκτενής, η πρόσθεση χωρίς την ...
από Mihalis_Lambrou
Πέμ Φεβ 22, 2024 8:18 pm
Δ. Συζήτηση: ΑΝΑΛΥΣΗ
Θέμα: Σύγκλιση ακολουθίας συναρτήσεων 19
Απαντήσεις: 3
Προβολές: 223

Re: Σύγκλιση ακολουθίας συναρτήσεων 19

Να εξετασθεί η σημειακή και ομοιόμορφη σύγκλιση της ακολουθίας πραγματικών συναρτήσεων $(f_n)_{n\in\mathbb{N}}$ με $f_n(x)=\displaystyle\int_{0}^{x}t \cos\big({\tfrac{\pi}{nt}}\big)\,dt\,,\; x\in({0,+\infty})$. α) Για $u >0$ από το ΘΜΤ έχουμε $0\le 1-\cos u = \cos 0 -\cos u = (-\sin \xi ) (0-u) = (...
από Mihalis_Lambrou
Πέμ Φεβ 22, 2024 9:20 am
Δ. Συζήτηση: Προτεινόμενα Θέματα Μαθηματικών
Θέμα: Γραφήματα
Απαντήσεις: 3
Προβολές: 300

Re: Γραφήματα

mick7 έγραψε:
Πέμ Φεβ 22, 2024 6:48 am
Βρείτε την σχέση μεταξύ των συναρτήσεων f,g απο το διάγραμμα.
Πρώτα μετατοπίζουμε την πάνω συνάρτηση κατά δύο μονάδες προς τα πίσω, και μετά πέρνουμε την συμμετρική της ως προς τον άξονα των x. Με αλγεβρικούς όρους η νέα συνάρτηση είναι η y=-f(x+2).
από Mihalis_Lambrou
Τρί Φεβ 20, 2024 1:58 pm
Δ. Συζήτηση: ΑΝΑΛΥΣΗ
Θέμα: Σύγκλιση ακολουθίας συναρτήσεων 18
Απαντήσεις: 3
Προβολές: 232

Re: Σύγκλιση ακολουθίας συναρτήσεων 18

και συνεπώς για $t\in\left[r,x\right]$ έχουμε $\displaystyle{\left|\frac{n}{t}\,\sin\left(\frac{t \pi}{n}\right)-\pi\right|=\frac{|g_{n,x}(t)|}{t}\leq \frac{g_{n,x}(r)}{t}\leq \frac{n\,\sin\left(\frac{\pi r}{n}\right)}{r}-\pi.}$ Βαγγέλη, επειδή αναρωτιέσαι αν είναι σωστή η μέθοδος: Δεν ξέρω να σου ...
από Mihalis_Lambrou
Δευ Φεβ 19, 2024 7:08 pm
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Όριο
Απαντήσεις: 2
Προβολές: 209

Re: Όριο

Βρείτε τα $\displaystyle a,b\in R$ , ώστε $\displaystyle \underset{x\to 0}{\mathop{\lim }}\,\frac{\sin x-(a{{x}^{3}}+bx)}{{{x}^{3}}}=1$ Από εξετάσεις στην Ιταλία Edit : Διορθώθηκε ουσιώδες τυπογραφικό. (Βλέπε επόμενη δημοσίευση) Με την διόρθωση του τυπογραφικού, έχουμε $\displaystyle{ \frac{\sin x-...

Επιστροφή στην ειδική αναζήτηση